K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2018

Ta có pt <=> \(y^2-2=3x-2xy\Leftrightarrow y^2-2=x\left(3-2y\right)\)

<=> x=\(\frac{y^2-2}{3-2y}\)

để x là số nguyên <=> \(\frac{y^2-2}{3-2y}\in Z\Leftrightarrow y^2-2⋮3-2y\)

=> \(4y^2-8⋮2y-3\Leftrightarrow4y^2-6y+6y-9+1⋮2y-3\)

<=> \(2y-3\inư\left(1\right)=\left\{\pm1\right\}\)

xét rồi thay vào nhá !!

^^

14 tháng 4 2018

y = 1

x = -1

11 tháng 6 2015

5x2+2xy+y2-4x-40=0

<=>(x+y)2=4(10+x-x2)

<=>x+y=2\(\sqrt{10+x-x^2}\)

 

25 tháng 2 2018

x2+2xy+x+y2+4y=0

x[x+2y+1]y[4+y]=0

x=0

y=0

y=-4

x=-1

y=-2

10 tháng 4 2019

hình như sai đề bạn. chỉ có x hoặc y thôi chứ

10 tháng 4 2019

Đề thi huyện đó bạn.

7 tháng 4 2020

3x^2-y^2-2xy-2x-2y+40=0

<=>(x-y)(3x+y)-(3x+y)+(x-y)+40=0

Đặt x-y=a: 3x+y=b

PT<=>ab+a-b-1=-41

<=>(b+1)(a-1)=-41

  Đến đây bạn tự giải nốt nha. cho xin phát :)

7 tháng 4 2020

nguyễn trí tâm tks bn

8 tháng 2 2019

PT \(\Leftrightarrow\left(x^2+3x\right)-2xy+\left(2y^2-2y+2\right)=0\) (1) 

(1) có nghiệm khi và chỉ khi \(\Delta'=y^2-\left(2y^2-2y+2\right)\ge0\)

\(\Leftrightarrow-y^2+2y-2\ge0\Leftrightarrow y^2-2y+2\le0\) (2)

Mà \(y^2-2y+2=\left(y-1\right)^2+1\ge1>0\forall y\)

Suy ra (2) vô nghiệm suy ra (1) vô nghiệm.

Vậy phương trình trên không có nghiệm nguyên.

13 tháng 3 2021

\(xy^2+\left(2x-27\right)y+x=0\)

Xét phương trình theo ẩn y. Để phương trình có nghiệm thì

\(\Delta_y=\left(2x-27\right)^2-4x.x\ge0\)

\(\Rightarrow1\le x\le6\)

Thế lần lược tực 1 tới 6 vô ta chỉ nhận \(\left(x;y\right)=\left(6;2\right)\)