\(1+x+x^2+x^3=2^y\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ta có:

\(x^3+3x^2+3x+1\ge x^3+x^2+x+1>x^3\)

\(\Rightarrow\left(x+1\right)^3\ge x^3+x^2+x+1>x^3\Rightarrow\left(x+1\right)^3=x^3+x^2+x+1\)

<=>x=0=>2y=1=>y=0

Vậy nghiệm của pt:(x;y)=(0;0)

17 tháng 11 2018

\(a\orbr{x=\frac{\pm\sqrt{5}-3}{4}}\)

\(b\hept{\begin{cases}x=5\\y=4\end{cases}}\)

17 tháng 11 2018

2)\(\Leftrightarrow\left(x^3-x^2y\right)+\left(y^3-xy^2\right)=5\)

\(\Leftrightarrow x^2\left(x-y\right)+y^2\left(y-x\right)=5\)

\(\Leftrightarrow x^2\left(x-y\right)-y^2\left(x-y\right)=5\)

\(\Leftrightarrow\left(x-y\right)\left(x^2-y^2\right)=5\)

TH1\(\hept{\begin{cases}x-y=1\\x^2-y^2=5\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=2\end{cases}\left(N\right)}}\)

TH2\(\hept{\begin{cases}x-y=5\\x^2-y^2=1\end{cases}\Leftrightarrow\hept{ }x,y\in\varnothing}\)

TH3\(\hept{\begin{cases}x-y=-1\\x^2-y^2=-5\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}\left(N\right)}}\)

TH4\(\hept{\begin{cases}x-y=-5\\x^2-y^2=-1\end{cases}\Leftrightarrow\hept{ }x,y\in\varnothing}\)

Vậy......

1 tháng 12 2017

x2+2y2+2xy-y=3(y-1)

<=> x2+2xy+y2+y2-y=3(y-1)

<=> (x+y)2=3(y-1)-y(y-1)

<=> (x+y)2=(y-1)(3-y)

Nhận thấy, Vế trái (x+y)2 \(\ge\)0 Với mọi x,y

=> Để phương trình có nghiệm thì Vế phải \(\ge\)0

<=> (y-1)(3-y)\(\ge\)0 <=> 1\(\le\)y\(\le\)3

Y nguyên => y1=1; y2=2; y3=3

+/ y=1 => x=-y=-1

+/ y=2 => x=-1

+/ y=3 => x=-y=-3

Các cặp (x,y) nguyên là: (-1,1); (-1; 2); (-3,3)

24 tháng 3 2018

\(x^2+2y^2+3xy-x-y+3=0\)

\(\Leftrightarrow\left(x+y\right)\left(x+2y-1\right)=-3\)

\(PT\Leftrightarrow xy\left(x+y-1\right)+\left(x+y-1\right)=1\)

\(\Leftrightarrow\left(x+y-1\right)\left(xy+1\right)=1\)

\(\Leftrightarrow\hept{\begin{cases}x+y-1=1\\xy+1=1\end{cases}hoac\hept{\begin{cases}x+y-1=-1\\xy+1=-1\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y=2\\xy=0\end{cases}hoac\hept{\begin{cases}x+y=0\\xy=-2\end{cases}}}\)

Đến đây thì đơn giản rồi nhé :)))

9 tháng 2 2020

Phương trình tương đương: \(\left(x+y\right)\left(x^2y^2+1\right)=xy+2\)

\(\Leftrightarrow x+y=\frac{xu+2}{x^2y^2+1}\)

\(\Rightarrow\left(xy+2\right)⋮\left(x^2y^2+1\right)\Rightarrow\left(x^2y^2-4\right)⋮\left(x^2y^2+1\right)\)

\(\Rightarrow\left(x^2y^2+1-5\right)⋮\left(x^2y^2+1\right)\Rightarrow5⋮\left(x^2y^2+1\right)\)

\(\Rightarrow x^2y^2+1\in\left\{1;5\right\}\Rightarrow x^2y^2\in\left\{0;4\right\}\Rightarrow xy\in\left\{-2;0;2\right\}\)

  • \(xy=0\Rightarrow xy=2\Rightarrow\left(x;y\right)\in\left\{\left(0;2\right);\left(2;0\right)\right\}\)
  • \(xy-2\Rightarrow x+y=0\Rightarrow y=-x\Rightarrow x^2=2\left(ktm\right)\)
  • \(xy=2\Rightarrow x+y=\frac{4}{5}\left(ktm\right)\)

Vậy: \(\left(x,y\right)\in\left\{\left(0;2\right);\left(2;0\right)\right\}\)

8 tháng 8 2018

đenta rồi cho đenta chính phương

8 tháng 8 2018

đenta là gì vậy bạn? Bạn có thể giải cụ thể giúp mình được ko