\(\sqrt{3x+4}=\sqrt[3]{y^3+5y^2+7y+4}.\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2021

\(\sqrt{3x+4}=\sqrt[3]{y^3+5y^2+7y+4}\)(\(x\ge-1\),VP>0)

=>\(3x+4=\sqrt[3]{\left(y^3+5y^2+7y+4\right)^2}\)

Do 3x+4 là số nguyên nên

 \(\sqrt[3]{\left(y^3+5y^2+7y+4\right)^2}\in Z\)=>\(\sqrt[3]{y^3+5y^2+7y+4}\in Z\)(1)

Ta có \(2y^2+4y+3=2\left(y+1\right)^2+1>0\)

=> \(y^3+5y^2+7y+4>y^3+3y^2+3y+1=\left(y+1\right)^3\)

=> \(y+1< \sqrt[3]{y^3+5y^2+7y+4}\)

Làm tương tự ta chứng minh được \(\sqrt[3]{y^3+5y^2+7y+4}< y+5\)

=> \(y+1< \sqrt[3]{y^3+5y^2+7y+4}< y+5\)

Kết hợp với (1)=> \(\orbr{\begin{cases}\sqrt[3]{y^3+5y^2+7y+4}=y+2\\\sqrt[3]{y^3+5y^2+7y+4}=y+3hoacy+4\end{cases}}\)

=> \(y\in\left\{-3;-1\right\}\)

+ y=-3 => x=-1

+y=-1 => x=-1

Vậy nghiệm nguyên của phương trình là \(\left(x;y\right)=\left(-1;-3\right),\left(-1;-1\right)\)

16 tháng 1 2022

Bó tay. com

17 tháng 1 2022
Ko biết sorry
1 tháng 11 2020

Bài 1 :

a) \(x^3-x^2-x-2=0\)

\(\Leftrightarrow x^3-2x^2+x^2-2x+x-2=0\)

\(\Leftrightarrow\left(x^3-2x^2\right)+\left(x^2-2x\right)+\left(x-2\right)=0\)

\(\Leftrightarrow x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+x+1\right)=0\)(1)

Vì \(x^2+x+1=x^2+2.\frac{1}{2}.x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

\(\Rightarrow x^2+x+1\ge\frac{3}{4}\forall x\)(2)

Từ (1) và (2) \(\Rightarrow x-2=0\)\(\Leftrightarrow x=2\)

Vậy \(x=2\)

1 tháng 11 2020

Bài 2: 

\(2x^2+y^2-2xy+2y-6x+5=0\)

\(\Leftrightarrow x^2-2xy+y^2-2x+2y+1+x^2-4x+4=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)-\left(2x-2y\right)+1+\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2-2\left(x-y\right)+1+\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(x-y-1\right)^2+\left(x-2\right)^2=0\)(1)

Vì \(\left(x-y-1\right)^2\ge0\forall x,y\)\(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-y-1\right)^2+\left(x-2\right)^2\ge0\forall x,y\)(2)

Từ (1) và (2) \(\Rightarrow\left(x-y-1\right)^2+\left(x-y\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-y-1=0\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=x-1\\x=2\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=2\end{cases}}\)

Vậy \(x=2\)và \(y=1\)

28 tháng 2 2016

Bài 3 nhé bạn đặt cái căn đầu là a ,căn sau là b 

a+b=x

ab=1

Rồi tính lần lượt a+bbằng ẩn x hết 

và mũ 4 cũng vậy rồi lấy 2 số nhân nhau .Bđ là ra 

14 tháng 10 2016

\(x^2=6+2\sqrt{2}+2\sqrt{\left[\left(3+\sqrt{2}\right)+\left(\sqrt{3}+\sqrt{6}\right)\right].\left[\left(3+\sqrt{2}\right)-\left(\sqrt{3}+\sqrt{6}\right)\right]}\)

\(=6+2\sqrt{2}+2\sqrt{11+6\sqrt{2}-\left(9+6\sqrt{2}\right)}=6+2\sqrt{2}+2\sqrt{2}=6+4\sqrt{2}=\left(\sqrt{2}+2\right)^2\)

\(\Rightarrow x=\sqrt{2}+2\)

...............................................................