
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có : 4x + 5y = 21
<=> 4x = 21 - 5y
<=> x = \(\frac{21-5y}{4}\)
Để x nguyên thì : \(\frac{21-5y}{4}\) nguyên
<=> 21 - 5y thuộc B(4) = {0;4;8;12;......}
<=> 5y thuộc {21;18;14;10;......}
<=> y = 5
Vậy y = 5 => 4x = 21 - 5.5 = -4 => x = -1


4(x+y)=11+xy <=> 4x+4y=11+xy
<=> xy-4y=4x-11 <=> y(x-4)=4x-11
=> \(y=\frac{4x-11}{x-4}=\frac{4x-16+5}{x-4}=\frac{4\left(x-4\right)+5}{x-4}\)=> \(y=4+\frac{5}{x-4}\)
Để y nguyên => x-4=(-5,-1,1,5)
x-4 | -5 | -1 | 1 | 5 |
x | -1 | 3 | 5 | 9 |
y | 3 | -1 | 9 | 5 |
Các cặp (x,y) thỏa mãn là (-1,3); (3,-1); (5,9); (9,5)
b/ x3-2x-4=0
<=> x3-4x+2x-4=0
<=> x(x2-4)+2(x-2)=0
<=> x(x-2)(x+2)+2(x-2)=0
<=> (x-2)(x2+2x+2)=0
Nhận thấy, x2+2x+2=x2+2x+1+1 = (x+1)2+1 > 0 với mọi x
=> Phương trình có nghiệm duy nhất là: x-2=0 <=> x=2
Đáp số: x=2

có vô số nghiệm:
xy =z2 => x = \(\frac{z^2}{y}\)
nếu z=2 => y =2; x =2
nếu z=1 =>x=1;y=1
nếu z =3 => y = 3;x=3
.................
Ta có: \(x^2+5y^2+2y-4xy-3=0\)
\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2+2y+1\right)=4\)
\(\Leftrightarrow\left(x-4y\right)^2+\left(y+1\right)^2=4\)
Vì \(\hept{\begin{cases}\left(x-4y\right)^2\ge0\forall x,y\\\left(y+1\right)^2\ge0\forall y\end{cases}}\)\(\Rightarrow\)\(\left(x-4y\right)^2+\left(y+1\right)^2\ge0\forall x,y\)
mà \(\left(x-4y\right)^2+\left(y+1\right)^2=4\)\(\Rightarrow\)\(0\le\left(x-4y\right)^2+\left(y+1\right)^2\le4\forall x,y\)
Vì \(x,y\in Z\)\(\Rightarrow\)\(\hept{\begin{cases}\left(x-4y\right)^2\inℤ\\\left(y+1\right)^2\inℤ\end{cases}}\)
+) \(\hept{\begin{cases}\left(x-4y\right)^2=0\\\left(y+1\right)^2=4\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x-4y=0\\y+1=2\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=4\\y=1\end{cases}}\)( TM )
+) \(\hept{\begin{cases}\left(x-4y\right)^2=1\\\left(y+1\right)^2=3\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x-4y=1\\y+1=\sqrt{3}\end{cases}}\)( loại )
+) \(\hept{\begin{cases}\left(x-4y\right)^2=2\\\left(y+1\right)^2=2\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x-4y=\sqrt{2}\\y+1=\sqrt{2}\end{cases}}\)( loại )
+) \(\hept{\begin{cases}\left(x-4y\right)^2=4\\\left(y+1\right)^2=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x-4y=2\\y+1=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=-2\\y=-1\end{cases}}\)( TM )
Vậy \(\left(x,y\right)\in\left\{\left(-2,-1\right);\left(4,1\right)\right\}\)
\(x^2+5y^2+2y-4xy-3=0\)
\(\Leftrightarrow x^2-4xy+4y^2+y^2+2y+1-4=0\)
\(\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)
Vì \(\hept{\begin{cases}\left(x-2y\right)^2\ge0\\\left(y+1\right)^2\ge0\end{cases}\Leftrightarrow0\le\left(x-2y\right)^2+\left(y+1\right)^2\le4}\)
Ta xét lần lượt là ra nha