K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2021

Ta có: \(x^2+5y^2+2y-4xy-3=0\)

   \(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2+2y+1\right)=4\)

   \(\Leftrightarrow\left(x-4y\right)^2+\left(y+1\right)^2=4\)

Vì \(\hept{\begin{cases}\left(x-4y\right)^2\ge0\forall x,y\\\left(y+1\right)^2\ge0\forall y\end{cases}}\)\(\Rightarrow\)\(\left(x-4y\right)^2+\left(y+1\right)^2\ge0\forall x,y\)

mà \(\left(x-4y\right)^2+\left(y+1\right)^2=4\)\(\Rightarrow\)\(0\le\left(x-4y\right)^2+\left(y+1\right)^2\le4\forall x,y\)

Vì \(x,y\in Z\)\(\Rightarrow\)\(\hept{\begin{cases}\left(x-4y\right)^2\inℤ\\\left(y+1\right)^2\inℤ\end{cases}}\)

+) \(\hept{\begin{cases}\left(x-4y\right)^2=0\\\left(y+1\right)^2=4\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x-4y=0\\y+1=2\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=4\\y=1\end{cases}}\)( TM )

+) \(\hept{\begin{cases}\left(x-4y\right)^2=1\\\left(y+1\right)^2=3\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x-4y=1\\y+1=\sqrt{3}\end{cases}}\)( loại )

+) \(\hept{\begin{cases}\left(x-4y\right)^2=2\\\left(y+1\right)^2=2\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x-4y=\sqrt{2}\\y+1=\sqrt{2}\end{cases}}\)( loại )

+) \(\hept{\begin{cases}\left(x-4y\right)^2=4\\\left(y+1\right)^2=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x-4y=2\\y+1=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=-2\\y=-1\end{cases}}\)( TM )

Vậy \(\left(x,y\right)\in\left\{\left(-2,-1\right);\left(4,1\right)\right\}\)

28 tháng 2 2021

\(x^2+5y^2+2y-4xy-3=0\)

\(\Leftrightarrow x^2-4xy+4y^2+y^2+2y+1-4=0\)

\(\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)

Vì \(\hept{\begin{cases}\left(x-2y\right)^2\ge0\\\left(y+1\right)^2\ge0\end{cases}\Leftrightarrow0\le\left(x-2y\right)^2+\left(y+1\right)^2\le4}\)

Ta xét lần lượt là ra nha

21 tháng 2 2020

a, mx - 2x + 3 = 0

m = -4

<=> -4x - 2x + 3 = 0

<=> -6x = -3

<=> x = 1/2

b, mx - 2x + 3 = 0 

x = 2

<=> 2m - 2.2 + 3 =0

<=> 2m - 1 = 0

<=>  m = 1/2

Ta có : 4x + 5y = 21

<=> 4x = 21 - 5y 

<=> x = \(\frac{21-5y}{4}\)

Để x nguyên thì : \(\frac{21-5y}{4}\) nguyên 

<=> 21 - 5y thuộc B(4) = {0;4;8;12;......}

<=> 5y thuộc {21;18;14;10;......}

<=> y = 5 

Vậy y = 5 => 4x = 21 - 5.5 = -4 => x = -1

6 tháng 4 2017

4x+11y = 4xy

<=> 4x - 4xy - 11 + 11y = -11

<=> 4x( 1 - y) - 11(1 - y) = -11

<=> (4x-11)(y - 1) = 11

<=> 4x - 11 và y - 1 là Ư(11) = {-11;-1;1;11}

Bảng giá trị

4x - 11-11-1111
y - 1-1-11111
x02,535,5
y0-10122

Vậy pt có tập nghiệp (x,y) là (0;0); (2,5;-10); (3; 12); (5,5; 2)

21 tháng 3 2018

4(x+y)=11+xy  <=> 4x+4y=11+xy

<=> xy-4y=4x-11  <=> y(x-4)=4x-11

=> \(y=\frac{4x-11}{x-4}=\frac{4x-16+5}{x-4}=\frac{4\left(x-4\right)+5}{x-4}\)=> \(y=4+\frac{5}{x-4}\)

Để y nguyên => x-4=(-5,-1,1,5)

x-4  -5  -1  1  5
x  -1   3  5  9
y   3  -1  9  5

Các cặp (x,y) thỏa mãn là (-1,3); (3,-1); (5,9); (9,5)

21 tháng 3 2018

b/ x3-2x-4=0

<=> x3-4x+2x-4=0

<=> x(x2-4)+2(x-2)=0

<=> x(x-2)(x+2)+2(x-2)=0

<=> (x-2)(x2+2x+2)=0

Nhận thấy, x2+2x+2=x2+2x+1+1 = (x+1)2+1 > 0 với mọi x

=> Phương trình có nghiệm duy nhất là: x-2=0 <=> x=2

Đáp số: x=2

6 tháng 8 2016

có vô số nghiệm:

xy =z2 =>  x = \(\frac{z^2}{y}\)

nếu z=2 => y =2; x =2

nếu z=1 =>x=1;y=1

nếu z =3 => y = 3;x=3

.................