Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)11x-7<8x+7
<-->11x-8x<7+7
<-->3x<14
<--->x<14/3 mà x nguyên dương
---->x \(\in\){0;1;2;3;4}
b)x^2+2x+8/2-x^2-x+1>x^2-x+1/3-x+1/4
<-->6x^2+12x+48-2x^2+2x-2>4x^2-4x+4-3x-3(bo mau)
<--->6x^2+12x-2x^2+2x-4x^2+4x+3x>4-3+2-48
<--->21x>-45
--->x>-45/21=-15/7 mà x nguyên âm
----->x \(\in\){-1;-2}
\(y=\frac{x^3-x^2+2x+7}{x^2+1}=x-1+\frac{x+8}{x^2+1}\)
Đặt
\(A=\frac{x+8}{x^2+1}\)
\(\Leftrightarrow\left(x-8\right)A=\frac{x^2-64}{x^2+1}=1-\frac{65}{x^2+1}\)
Để A nguyên thì \(x^2+1\)phải là ước của 65. Làm nốt
Từ PT \(\Leftrightarrow x^2-2xy+y^2+x^2+y^2=6\)
\(\Leftrightarrow\left(x-y\right)^2+x^2+y^2=6\)
\(\Rightarrow x^2< 6\Leftrightarrow x^2\in\left\{1,4\right\}\Leftrightarrow x\in\left\{1;-1;2;-2\right\}\)
Với \(x=1\)thì \(1-y+y^2=3\Leftrightarrow y^2-y=2\Leftrightarrow y\left(y-1\right)=2\Leftrightarrow\orbr{\begin{cases}y=2\\y=-1\end{cases}}\)
Với \(x=-1\) thì \(1+y+y^2=3\Leftrightarrow y\left(y+1\right)=2\Leftrightarrow\orbr{\begin{cases}y=1\\y=-2\end{cases}}\)
Với \(x=2\) thì \(4-2y+y^2=3\Leftrightarrow y^2-2y+1=0\Leftrightarrow\left(y-1\right)^2=0\Leftrightarrow y=1\)
Với \(x=-2\) thì \(4+2y+y^2=3\Rightarrow y^2+2y+1=0\Leftrightarrow\left(y+1\right)^2=0\Leftrightarrow y=-1\)
Vậy các cặp số nguyên x,y thỏa mãn \(x^2-xy+y^2=3\) là \(\left(x,y\right)=\left\{\left(1,2\right);\left(1,-1\right);\left(-1,1\right);\left(-1,-2\right);\left(2,1\right);\left(-2,-1\right)\right\}\)