Tìm nghiệm nguyên của phương trình : \(x^3+y^3+z^3=101...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2016

Hỏi đáp Toán

ko phải bài của mk nên bn ko tick cx đc,mk chỉ đăng lên để giúp bn thôi

11 tháng 11 2016

vậy nghiệm nguyên dương của PT là bao nhêu

15 tháng 6 2019

#)Giải :

VD1:

Với \(\orbr{\begin{cases}x>0\\x< -1\end{cases}}\)ta có :

\(x^3< x^3+x^2+x+1< \left(x+1\right)^3\)

\(\Rightarrow x^3< y^3< \left(x+1\right)^3\)( không thỏa mãn )

\(\Rightarrow-1\le x\le0\)

Mà \(x\in Z\Rightarrow x\in\left\{-1;0\right\}\)

Với \(\orbr{\begin{cases}x=-1\\x=0\end{cases}\Rightarrow\orbr{\begin{cases}y=0\\y=1\end{cases}}}\)

Vậy...........................

15 tháng 6 2019

#)Giải :

VD2:

\(x^4-y^4+z^4+2x^2z^2+3x^2+4z^2+1=0\)

\(\Leftrightarrow y^4=x^4+z^4+2x^2z^2+3x^2+4z^2+1\)

\(\Leftrightarrow y^4=\left(x^2+y^2\right)+3x^2+4z^2+1\)

Ta dễ nhận thấy : \(\left(x^2+y^2\right)^2< y^4< \left(x^2+y^2+2\right)^2\)

Do đó \(y^4=\left(x^2+y^2+1\right)^2\)

Thay vào phương trình, ta suy ra được \(x=z=0\)

\(\Rightarrow y=\pm1\)

15 tháng 6 2019

\(VD1\)

Giả sử \(x\le y\Rightarrow\sqrt{x}\le\sqrt{y}\)

\(\Rightarrow2\sqrt{x}\le\sqrt{x}+\sqrt{y}=9\)

\(\Rightarrow\sqrt{x}\le4,5\)

\(\Rightarrow x\le4,5^2\)

\(\Rightarrow x\le20,25\)

\(\Rightarrow x\in\left\{0,1,4,9,16\right\}\)

\(\Rightarrow\sqrt{x}\in\left\{0,1,2,3,4\right\}\)

TH1 : \(x=0\Rightarrow\sqrt{x}=0\Rightarrow\sqrt{y}=9\Rightarrow y=81\)

TH2 : \(x=1\Rightarrow\sqrt{x}=1\Rightarrow\sqrt{y}=8\Rightarrow y=64\)

Th3 : \(x=4\Rightarrow\sqrt{x}=2\Rightarrow\sqrt{y}=7\Rightarrow y=49\)

Th4 : \(x=9\Rightarrow\sqrt{x}=3\Rightarrow\sqrt{y}=6\Rightarrow y=36\)

Th5 : \(x=16\Rightarrow\sqrt{x}=4\Rightarrow\sqrt{y}=5\Rightarrow y=25\)

Vì x , y có vai trò như nhau nên các trường hợp còn lại chỉ là đổi chỗ giữa x và y . ( vd y = 0 thì x = 81 )

KL....
 

15 tháng 6 2019

VD2: Ta có:

x+y+z=xyz ( 1 )

Chia 2 vế của ( 1 ) cho xyz\(\ne\)0 ta đc:

\(\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}=1\)

Giả sử \(x\ge y\ge z\ge1\)thì ta có:

\(1=\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}\le\frac{1}{z^2}+\frac{1}{z^2}+\frac{1}{z^2}=\frac{3}{z^2}\)

\(\Rightarrow1\le\frac{3}{z^2}\Rightarrow z^2\le3\Leftrightarrow z=1\)

Thay z=1 vào ( 1 ) ta đc:

x+y+1=xy

\(\Leftrightarrow\)xy -x - y = 1

\(\Leftrightarrow\)x ( y - 1 ) - ( y - 1 ) = 2

\(\Leftrightarrow\)( x - 1 ) ( y - 1 ) =2

Mà \(x-1\ge y-1\)nên \(\hept{\begin{cases}x-1=2\\y-1=1\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}}\)

Vậy nghiệm dương của phương trình là các hoán vị của 1, 2, 3

15 tháng 6 2019

a.

Do \(x^2;y^2\) là các số chính phương nên chia cho 4 dư 0 hoặc 1 nên  \(x^2-y^2\) chia 4 dư 0;1;3 mà  \(1998\) chia 4 dư 2 nên PT vô nghiệm.

b.

Do \(x^2;y^2\) là các số chính phương nên chia cho 4 dư 0 hoặc 1 nên \(x^2+y^2\) chia 4 dư 0;1;2 mà \(1999\) chia 4 dư 3 nên PT vô nghiệm

15 tháng 6 2019

#)Giải :

VD1:

a) Ta thấy x2,y2 chia cho 4 chỉ dư 0,1

nên x2 - y2 chia cho 4 có số dư là 0,1,3. Còn vế phải chia cho 4 có số dư là 2

=> Phương trình không có nghiệm nguyên

b) Ta thấy x2 + y2 chia cho 4 có số dư là 0,1,2. Còn vế phải 1999 chia cho 4 dư 3 

=> Phương trình không có nghiệm nguyên