Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(x^2y^2+x^2+y^2+4xy=73\)
<=> \(\left(x^2y^2+4xy+4\right)+x^2+y^2=77\)
<=> \(\left(xy+2\right)^2+x^2=77-y^2\) (1)
Do \(\left(xy+2\right)^2+x^2\ge0\) => \(77-y^2\ge\)0 => \(y^2\le77\)
Do y nguyên và y2 là số chính phương => y2 \(\in\){0; 1; 4; 9; 16; 25; 36; 49; 64}
=> \(y\in\left\{0;\pm1;\pm2;\pm3;\pm4;\pm5;\pm6;\pm7;\pm8\right\}\)
thay y vào pt (1) ... (tự làm)
Hoặc C2:
\(x^2y^2+x^2+y^2+4xy=73\)
<=> \(\left(x^2y^2+2xy+1\right)+\left(x^2+2xy+y^2\right)=74\)
<=> \(\left(xy+1\right)^2+\left(x+y\right)^2=74=5^2+7^2\)
Xét các TH xảy ra:
+) \(\hept{\begin{cases}xy+1=5\\x+y=7\end{cases}}\)
+) \(\hept{\begin{cases}xy+1=-5\\x+y=7\end{cases}}\)
+) \(\hept{\begin{cases}xy+1=5\\x+y=-7\end{cases}}\)
+) \(\hept{\begin{cases}xy+1=-5\\x+y=-7\end{cases}}\)
+) \(\hept{\begin{cases}xy+1=7\\x+y=5\end{cases}}\)
+) \(\hept{\begin{cases}xy+1=-7\\x+y=5\end{cases}}\)
+) \(\hept{\begin{cases}xy+1=7\\x+y=-5\end{cases}}\)
+) \(\hept{\begin{cases}xy+1=-7\\x+y=-5\end{cases}}\)
(Tự tính)
\(\Delta\)không thì dùng cách này cho dễ
\(x^2+3y^2+2xy-18\left(x+y\right)+73=0\)
\(\Leftrightarrow\left(x+y\right)^2-18\left(x+y\right)+81+2y^2=8\)
\(\Leftrightarrow\left(x+y-9\right)^2+2y^2=8\)
\(\Rightarrow2y^2\le8\Rightarrow y^2\le4\Rightarrow-2\le y\le2\)
\(\Rightarrow y\in\left\{\pm1;\pm2;0\right\}\)( do y nguyên )
+) y = 0 \(\Rightarrow\left(x+y-9\right)^2=8\)( loại )
+) y = \(\pm1\)\(\Rightarrow\left(x+y-9\right)^2=6\)( loại )
+) y = \(\pm2\)\(\Rightarrow\left(x+y-9\right)^2=0\Rightarrow x=9-y\Rightarrow\orbr{\begin{cases}x=7\\x=11\end{cases}}\)
Vậy ( x ; y ) \(\in\){ ( 7 ; 2 ) ; ( 11 ; -2 ) }
Tui vừa trả lời 3 bài này ở câu của Nguyễn Anh Quân
Xem tui giải đúng không nha
Xin Wrecking Ball nhận xét
a)
x | 1 | 2 | 3 | 4 | 5 | 6 |
y | \(\sqrt{22}\)(loại | \(2\sqrt{7}\)(loại) | \(\sqrt{46}\)(loại) | 10(thoả mãn) | \(\sqrt{262}\) |
\(\Rightarrow\left(x,y\right)=\left(4;10\right)\)