K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
NH
0
NQ
3
3 tháng 12 2021
1. \(2xy-x+y=3\)\(\Leftrightarrow4xy-2x+2y=6\Leftrightarrow2x\left(2y-1\right)+\left(2y-1\right)=5\)
\(\Leftrightarrow\left(2y-1\right)\left(2x+1\right)=5\)
Ta lập bảng giá trị:
\(2y-1\) | 1 | 5 | -1 | -5 |
\(2x+1\) | 5 | 1 | -5 | -1 |
\(x\) | 2 | 0 | -3 | -1 |
\(y\) | 1 | 3 | 0 | -2 |
Vậy phương trình đã cho có cách nghiệm nguyên (2;1);(0;3);(-3;0) và (-1;-2)
3 tháng 12 2021
2xy-x+y=3
2(2xy-x+y)=2.3
4xy-2x+2y=6
2x(2y-1)-2y=6
2x(2y-1)-2y+1=6+1
2x(2y-1)-(2y-1)=7
(2x-1)(2y-1)=7
TT
0
QT
0
NA
3
16 tháng 10 2020
Ta có: \(x^2-2xy+5y^2=y+1\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+4y^2-y-1=0\)
\(\Leftrightarrow\left(x-y\right)^2+4y^2-y-1=0\)
Mà \(4y^2-4y-1=3y^2+\left(y^2-y\right)-1\)
\(=3y^2+y\left(y-1\right)-1\ge3\cdot1+0-1=2>0\)
\(\Rightarrow\left(x-y\right)^2+4y^2-y-1>0\)
=> pt vô nghiệm
Lời giải:
$x^2-2xy+5y^2=y+1$
$\Leftrightarrow x^2-2xy+y^2=y+1-4y^2$
$\Leftrightarrow y+1-4y^2=(x-y)^2\geq 0$
$\Leftrightarrow y+1-4y^2\geq 0$
$\Leftrightarrow 4y^2-y-1\leq 0$
$\Leftrightarrow 4y^2-y-3\leq -2<0$
$\Leftrightarrow (y-1)(4y+3)<0$
$\Leftrightarrow \frac{-3}{4}< y< 1$
$y$ nguyên nên $y=0$
Khi đó: $x^2=1\Leftrightarrow x=\pm 1$
Vậy $(x,y)=(\pm 1,0)$