Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ nhân 4 cả 2 vế lên, vế trái sẽ trở thành (2x+1)(2x+2)^2(2x+3), nhân 2x+1 với 2x+3, cái bình phương phân tích ra
thành (4x^2+8x+3)(4x^2+8x+4)=72
đặt 4x^2+8x+4=a \(\left(a\ge0\right)\)
thay vào ta có (a-1)a=72 rồi bạn phân tích thành nhân tử sẽ có nghiệm là 9 và -8 loại được -8 thì nghiệm của a là 9
suy ra 2x+1=3 hoặc -3, tính ra được x rồi nhân vào với nhau
2/\(\Leftrightarrow5\sqrt{\left(x+1\right)\left(x^2-x+1\right)}=2\left[\left(x+1\right)+\left(x^2-x+1\right)\right]\)
đặt căn x+1=a, căn x^2-x+1=b (a,b>=0)
thay vào ra là \(2a^2-5ab+2b^2=0\\
\Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\)
suy ra a=2b hoặc b=2a, thay cái kia vào bình phương lên giải nốt phương trình rồi nhân nghiệm với nhau
Nghiệm nguyên.
2x+3=(2x+1)+2
\(\left(1\right)\Leftrightarrow\left[\left(2x+1\right)\left(x+1\right)\right]^2+2\left(2x+1\right)\left(x+1\right)^2=18\\ \)
2x+1 luôn lẻ---> x+1 phải chẵn --> x phải lẻ---> x=2n-1
\(\left(4n+3\right)\left(2n\right)^2\left(4n+1\right)=18\)
18 không chia hết co 4 vậy vô nghiệm nguyên.
Viết diễn dải dài suy luận logic rất nhanh
Phương trình tương đương với:
\(6x+6y+48=9xy\)\(\Leftrightarrow9xy-6x-6y=48\)\(\Leftrightarrow9xy-6x-6y+4=52\)\(\Leftrightarrow3x\left(3y-2\right)-2\left(3y-2\right)=52\)\(\Leftrightarrow\left(3x-2\right)\left(3y-2\right)=52.\)
Do \(x,y\inℕ^∗\)nên \(3x-2;3y-2\ge1\). Do đó 3x - 2 và 3y - 2 là các ước nguyên dương của 52 gồm 1;4;13;52.
Do \(x,y\inℕ^∗\)nên 3x - 2; 3y - 2 chia 3 dư 1. Do vai trò của x và y như nhau nên giả sử x \(\le\)y, ta có 2 trường hợp sau:
- \(\hept{\begin{cases}3x-2=1\\3y-2=52\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=18\end{cases}.}}\)
- \(\hept{\begin{cases}3x-2=4\\3y-2=13\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=5\end{cases}.}}\)
Đảo vai trò của x và y cho nhau ta có 4 cặp số (x;y) nguyên dương thoả mãn đề bài: (1;18),(18;1),(2;5),(5;2).
ôi người ơi mọi người có thấy ai tên hồ thị hương mà là con trai chưa
Bài làm:
Ta có: \(\left(x+3\right)\left(y+4\right)=3xy\)
\(\Leftrightarrow xy+4x+3y+12-3xy=0\)
\(\Leftrightarrow\left(4x-2xy\right)+\left(6-3y\right)=6\)
\(\Leftrightarrow2x\left(2-y\right)+3\left(2-y\right)=6\)
\(\Leftrightarrow\left(2x+3\right)\left(2-y\right)=6=6.1=\left(-6\right).\left(-1\right)=2.3=\left(-2\right).\left(-3\right)\)
Mà ta thấy \(2x+3\) lẻ với mọi x nguyên nên ta xét các TH sau:
+ \(\hept{\begin{cases}2x+3=1\\2-y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=-4\end{cases}}\)
+ \(\hept{\begin{cases}2x+3=-1\\2-y=-6\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=8\end{cases}}\)
+ \(\hept{\begin{cases}2x+3=3\\2-y=2\end{cases}\Rightarrow}\hept{\begin{cases}x=0\\y=0\end{cases}}\)
+ \(\hept{\begin{cases}2x+3=-3\\2-y=-2\end{cases}}\Rightarrow\hept{\begin{cases}x=-3\\y=4\end{cases}}\)
Vậy ta có 4 cặp số (x;y) thỏa mãn: ...
Phá tung ra thoi ạ
\(\Leftrightarrow xy+3y+4x+12=3xy\)
\(\Leftrightarrow4x-2xy-6+3y=-18\)
\(\Leftrightarrow2x\left(2-y\right)-3\left(2-y\right)=-18\)
\(\Leftrightarrow\left(2x-3\right)\left(2-y\right)=-18\)
~~ Lập bảng xét ước là xong :v