K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2021

\(x=y=z=0\)là n0 của pt

xét x,y,z khác 0 

\(\frac{5\left(xy+yz+zx\right)}{xyz}=4\)

\(5\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=4\)

\(< =>\frac{1}{x}+\frac{1}{y}+\frac{1}{z}⋮4\)

ta có \(\left|x\right|\ge1< =>\frac{1}{\left|x\right|}\le1\)

tương tự với 2 cái còn lại 

\(\frac{1}{\left|x\right|}+\frac{1}{\left|y\right|}+\frac{1}{\left|z\right|}\le3\)

\(\frac{1}{\left|x\right|}+\frac{1}{\left|y\right|}+\frac{1}{\left|z\right|}\ge\left|\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right|\)

\(< =>\left|\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right|\le3\)

\(-3\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le3\)

mà \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}⋮4\)từ -3 đến 3 chỉ có số 0 chia hết cho 4 mà x,y,z khác 0 (loại)

vậy bộ nghiệm duy nhất của pt là \(x=y=z=0\)

30 tháng 10 2023

trường hợp 10,5,2 và hoán vị của bộ này vẫn thỏa mãn đề bài mà nhỉ

 

27 tháng 3 2021

\(x^2+x+xy-2y^2-y=5\)

\(\Leftrightarrow2x^2+2x+2xy-4y^2-2y=10\)

\(\Leftrightarrow\left(x^2+2x+1\right)-\left(y^2+2y+1\right)+\left(x^2+2xy+y^2\right)\)\(-4y^2=10\)

\(\Leftrightarrow\left(x+1\right)^2-\left(y+1\right)^2+\left(x+y\right)^2-4y^2=10\)

\(\Leftrightarrow\left[\left(x+1\right)^2-4y^2\right]+\left[\left(x+y\right)^2-\left(y+1\right)^2\right]=10\)

\(\Leftrightarrow\left(x+2y+1\right)\left(x-2y+1\right)+\left(x-1\right)\left(x+2y+1\right)=10\)

\(\Leftrightarrow\left(x+2y+1\right)\left(x-2y+1+x-1\right)=10\)

\(\Leftrightarrow\left(x+2y+1\right)\left(2x-2y\right)=10\)

\(\Leftrightarrow2\left(x+2y+1\right)\left(x-y\right)=10\)

\(\Leftrightarrow\left(x+2y+1\right)\left(x-y\right)=5\)

Vì \(x,y>0\left(x,y\inℤ\right)\Rightarrow x+2y+1\inℤ^+\)

Mà \(\left(x+2y+1\right)\left(x-y\right)=5\)

Do đó \(\left(x-y\right)\inℤ^+\)

Vì \(x+2y+1\ge x-y>0\)(vì \(x;y\in Z^+\))

\(\Rightarrow\left(x+2y+1\right)\left(x-y\right)=5.1\)

\(\Leftrightarrow\hept{\begin{cases}x+2y+1=5\\x-y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x+2y+1=5\\x=y+1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}y+1+2y+1=5\\x=y+1\end{cases}}\Leftrightarrow\hept{\begin{cases}3y+2=5\\x=y+1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3y=3\\x=y+1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=y+1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=2\end{cases}}\)(thỏa mãn \(x,y\inℤ^+\))

Vậy phương trình có nghiệm nguyên dương \(\left(x;y\right)=\left(2;1\right)\)

27 tháng 3 2021

Lưu ý : tớ ghi \(ℤ^+\)là chỉ số nguyên dương, ghi vào vở bạn nên ghi là "số nguyen dương" thôi.

6 tháng 8 2016

có vô số nghiệm:

xy =z2 =>  x = \(\frac{z^2}{y}\)

nếu z=2 => y =2; x =2

nếu z=1 =>x=1;y=1

nếu z =3 => y = 3;x=3

.................

28 tháng 4 2017

\(xy-x+2y=3\)

\(\Leftrightarrow xy-x+2y-2=1\)

\(\Leftrightarrow x\left(y-1\right)+2\left(y-1\right)=1\)

\(\Leftrightarrow\left(x+2\right)\left(y-1\right)=1\)

\(\Rightarrow x+2=1\) thì \(y-1=1\) \(\Rightarrow x=-1\) thì \(y=2\)

\(\Rightarrow x+2=-1\) thì \(y-1=-1\) \(\Rightarrow x=-3\) thì \(y=0\)

Vậy ....................

29 tháng 5 2017

Đề bài: \(xy-x+2y=3\)

\(\Leftrightarrow\left(x+2\right)y=x+3\)

\(\Leftrightarrow x\left(y-1\right)+2y=3\)

\(\Leftrightarrow xy-x+2y-3=0\)

\(\Rightarrow x+2\ne0\)\(,\)\(y=\frac{x+3}{x+2}\)

\(\Rightarrow x=-3\)\(,\)\(y=0\)

\(x=-1\)\(,\)\(y=2\)

16 tháng 12 2019

Ta có : xy-45=35-5y

<=> xy+5y= 35+45

<=> y(x+5) = 80

*Nếu x= -5 thì ta có y( -5 +5 ) = 80

<=> 0=80( Vô nghiệm)

Suy ra :  x khác -5 

=> x+5 khác 0

Ta có : y(x+5) = 80

\(\Leftrightarrow\) \(y=\frac{80}{x+5}\)

Mà \(y\in Z\)nên \(\frac{80}{x+5}\in Z\)

\(\Leftrightarrow80⋮x+5\)\(\Leftrightarrow x+5\inƯ\left(80\right)\)

\(\Leftrightarrow x+5\in\hept{ }-80;-40;-20;-16;-10;-8;-5;-4;-2;-1;1;2;4;5;8;10;16;20;40;80\)

Bạn giải x ra , sau đó tìm ra y , chứ dài qua mình không ghi trên này được @@