K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2020

Ta có:

x(x2+x+1)=4y(y+1)x(x2+x+1)=4y(y+1)

⟺x3+x2+x+1=4y2+4y+1⟺x3+x2+x+1=4y2+4y+1

⟺(x2+1)(x+1)=(2y+1)2⟺(x2+1)(x+1)=(2y+1)2 (*)

Đặt (x2+1;x+1)=d(x2+1;x+1)=d

⟹(x+1)(x−1)−(x2+1)⋮d⟹(x+1)(x−1)−(x2+1)⋮d

⟹2⋮d⟹2⋮d

Dễ thầy VPVP của phương trình (∗)(∗) là số lẻ nên chỉ xảy ra trường hợp d=±1d=±1

⟹x2+1=a2⟹x2+1=a2 và x+1=b2x+1=b2

Từ đây dễ dàng suy ra x=0x=0

⟹y=0;y=−1⟹y=0;y=−1

Thử lại ta thấy (x;y)=(0;0);(0;−1)(x;y)=(0;0);(0;−1)

17 tháng 6 2016

<=> (2y)2 = 4x4 + 4x3 + 4x2 + 4x + 4 (*)

Đặt P(x) = 4x4 + 4x3 + 4x2 + 4x + 4

1./ 3x2 + 4x + 4 = 3[x2 + 2x*2/3 +(2/3)2] +4 - 4/3 = (x + 2/3)2 + 8/3 > 0 với mọi x

=> P(x) > Q(x) = 4x4 + 4x3 + 4x2 + 4x + 4 - (3x2 + 4x + 4) = 4x4 + 4x2 + x2 = (2x2 + x)2 (1)

2./ 5x2 >= 0 với mọi x

=> P(x) <= 4x4 + 4x3 + 4x2 + 4x + 4 + 5x2 = 4x4 + 4x3 + 9x2 + 4x + 4 = 4x4 + x2 + 4 + 2.2x2.x + 2.2x2.2 + 2.x.2 = (2x + x + 2)2 (2)

  • Với x = 0 thì PT có 2 nghiệm là (x=0;y=1) và (x=0;y=-1)
  • Với x khác 0 thì: P(x) < (2x + x + 2)2 với mọi x (2)

Từ (1) và (2) suy ra: (2x2 + x)2 < P(x) = (2y)2 < (2x + x + 2)2

Do đó số chính phương (2y)2 bị kẹp giữa 2 số chính phương chẵn (hoặc lẻ) liên tiếp. Nên 2|y| chỉ có thể là số kẹp giữa |2x2 + x| và |2x2 + x + 2| => 2|y| = |2x2 + x + 1| Khi đó (2y)= (2x2 + x + 1)= 4x4 + 4x3 + 5x2 + 2x + 1

Thay vào (*) => 4x4 + 4x3 + 5x2 + 2x + 1 = 4x4 + 4x3 + 4x2 + 4x + 4

=> x2 - 2x - 3 = 0 => (x + 1)(x - 3) = 0.

Với x = -1 thì y = 1 hoặc -1

Với x = 3 thì y = 11 hoặc -11.

3./ Vậy PT có 6 cặp nghiệm nguyên là: (0;1); (0;-1); (-1;1); (-1;-1); (3;11); (3;-11).

22 tháng 11 2019

 ta có : x - x4 y -25x3y+ 25 x2 y3  +144 xy4-144y5 =77

        <=> x(x-y ) - 25x2y( x-y)  +144y(x-y) =77

        <=> (x-y)(x4-25x2y2+144y4) =77

       <=> (x-y)(x4-16x2y2-9x2y2+144y) =77

       <=> (x-y)(x2-9y2)(x2-16y2 )=77 

đến đây bạn từ chia trường hợp nha 

22 tháng 11 2019

Thoy chia cả đống TH biết đường nào mà lần, bạn có cách nào để loại bớt TH ko giúp mình với  

21 tháng 9 2015

Áp dụng hằng đẳng thức \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\) với \(a=x,b=-y,c=-z\) ta được \(x^3-y^3-z^3-3xyz=\left(x-y-z\right)\left(x^2+y^2+z^2+xy-yz+zx\right)\) Thành thử \(x=y+z\)  hoặc \(x^2+y^2+z^2+xy-yz+zx=0.\) Vì \(x,y,z\)  là các số nguyên dương nên \(x^2+y^2+z^2+xy-yz+zx>x^2+z^2-xz\ge xz>0.\) Suy ra \(x=y+z\). Vì \(x^2=2\left(y+z\right)\to x^2=2x\to x=2\to y+z=2\to y=z=1.\)  (Vì các số \(x,y,z\) nguyên dương).

Vậy \(\left(x,y,z\right)=\left(2,1,1\right).\)