\(4x^2-17xy+12y^2-408=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2016

x2 - 12y2 + xy - x + 3y + 5 = 0

<=> (x2 - 9y2) + (- 3y2 + xy) + (3y - x) = - 5

<=> (x - 3y)(x + 3y) + y(x - 3y) - (x - 3y) = - 5

<=> (x - 3y)(x + 3y + y - 1) = - 5

<=> (x - 3y)(x + 4y - 1) = - 5

<=> (x - 3y, x + 4y - 1) = (- 1, 5; 5, - 1; 1, - 5; - 5, 1)

Giải ra tìm được (x, y) = (2, 1; - 2, 1)

30 tháng 10 2017

Đưa về PT bậc 2:

12y2−12xy+5x2+4x−1648=012y2−12xy+5x2+4x−1648=0

Xét Δ=(−6x)2−12(5x2+4x−1648)=24[825−(x+1)2]≥0Δ=(−6x)2−12(5x2+4x−1648)=24[825−(x+1)2]≥0

\Rightarrow −29≤x≤27−29≤x≤27

Do x nguyên dương \Rightarrow 0<x≤270<x≤27

PT có nghiệm nguyên \Rightarrow ΔΔ chính phương

\Rightarrow (x+1)2(x+1)2 chia 6 dư 3

\Rightarrow x thuộc 2;5;8;11;14;17;20;23;26

Mà x phải là số chẵn \Rightarrow x thuộc 2;8;14;20;26

Thử 5 số trên.

30 tháng 10 2017

leminhduc làm đúng

NV
7 tháng 5 2019

\(3\left(y^2+4y+4\right)+4x^2+3x-7=0\)

\(\Leftrightarrow3\left(y+2\right)^2=-4x^2-3x+7\)

Do \(3\left(y+2\right)^2\ge0\Rightarrow-4x^2-3x+7\ge0\)

\(\Rightarrow\left(4x+7\right)\left(1-x\right)\ge0\Rightarrow-\frac{7}{4}\le x\le1\)

Do \(x\) nguyên \(\Rightarrow x=\left\{-1;0;1\right\}\)

- Với \(x=-1\Rightarrow3\left(y+2\right)^2=6\Rightarrow\left(y+2\right)^2=2\Rightarrow\) ko có y nguyên t/m

- Với \(x=0\Rightarrow3\left(y+2\right)^2=7\Rightarrow\left(y+2\right)^2=\frac{7}{3}\) ko có y nguyên t/m

- Với \(x=1\Rightarrow3\left(y+2\right)^2=0\Rightarrow y=-2\)

Vậy \(\left(x;y\right)=\left(1;-2\right)\)

7 tháng 5 2019

hay

20 tháng 1 2019

\(x^2+y^2=2x^2y^2\)

\(\Rightarrow\frac{x^2+y^2}{x^2y^2}=2\)

\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}=2\left(1\right)\)

Do x,y bình đẳng như nhau,giả sử \(x\ge y\)

\(\Rightarrow x^2\ge y^2\)

Với x<1 thì VT của (1) âm mà vế phải dương.(Loại)

Với x=1 thì thỏa mãn

Với x>1 thì dễ thấy KTM

Vậy....

12 tháng 5 2020

ta dễ chứng minh được \(x+y\ge\frac{2\sqrt{2}}{5}-\frac{2}{5}\)\(\Rightarrow\)\(x+y+\frac{2\sqrt{2}}{5}-\frac{2}{5}>0\)

\(P=\frac{5\left(x+y+\frac{2\sqrt{2}}{5}-\frac{2}{5}\right)\left(\frac{5}{2}\left(x+y-\left(\frac{2\sqrt{2}}{5}-\frac{2}{5}\right)\right)\left(\frac{5}{2}\left(x+y\right)+\sqrt{2}+1\right)-\frac{9}{4}\left(x-y\right)^2\right)}{\frac{5}{2}\left(x+y\right)+\sqrt{2}+1}\)

\(+\left(\frac{\frac{45}{2}\left(x+y+\frac{2\sqrt{2}}{5}-\frac{2}{5}\right)}{5\left(x+y\right)+\sqrt{2}+1}+\frac{9}{2}\right)\left(x-y\right)^2+6-4\sqrt{2}\ge6-4\sqrt{2}\)

Dấu "=" xảy ra khi \(x=y=\frac{\sqrt{2}-1}{5}\)

12 tháng 5 2020

Ta chứng minh: \(P\ge6-4\sqrt{2}+\left(2-\sqrt{2}\right)\left(4x^2+4y^2+17xy+5x+5y-11\right)\)

Hay là:

\(\frac{\left(9+4\sqrt{2}\right)\left(98x-298y-130+225\sqrt{2}y+85\sqrt{2}\right)^2}{9604}+\frac{18\left(2\sqrt{2}-1\right)\left(-5y-1+\sqrt{2}\right)^2}{36+16\sqrt{2}}\ge0\)

Việc còn lại là của mọi người.

27 tháng 10 2020

\(2x^2+3y^2+4x=19\)

<=> \(2\left(x^2+2x+1\right)+3y^2=21\)

<=> \(2\left(x+1\right)^2+3y^2=21\)

<=> \(2\left(x+1\right)^2=21-3y^2\ge0\)

=> \(y^2\le7\)(1) 

Mặt khác \(2\left(x+1\right)^2=21-3y^2⋮2\)

=> 21 - 3y^2 là số chẵn  => 3y^2 là số lẻ => y^2 là số chính phương lẻ  (2) 

Từ (1) và (2) => y = 1 hoặc y = - 1=> y^2 = 1 

=> 2 (x + 1)^2 = 18 <=> (x + 1 ) = 9 <=> x + 1 = 3 hoặc x + 1 = - 3 <=> x = 2 hoặc x = -4

Vậy phương trình có 4 nghiệm ( 2; 1) (2; -1); (-4; 1 ); (-4; -1)

Khó quá đi

25 tháng 10 2016

5x4 - 4x2y + y2 - 85 = 0

<=> (2x2 - y)2 + x4 = 85

Từ đây ta có x4 \(\le85\)

<=> \(0\le x^2\le9\)

Kết hợp với việc 85 phải là tổng của 2 bình phương ta suy ra

\(\hept{\begin{cases}\left(2x^2-y\right)^2=4\\x^4=81\end{cases}}\)

Giải tiếp suy ra nghiệm nguyên cần tìm