Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2 - 12y2 + xy - x + 3y + 5 = 0
<=> (x2 - 9y2) + (- 3y2 + xy) + (3y - x) = - 5
<=> (x - 3y)(x + 3y) + y(x - 3y) - (x - 3y) = - 5
<=> (x - 3y)(x + 3y + y - 1) = - 5
<=> (x - 3y)(x + 4y - 1) = - 5
<=> (x - 3y, x + 4y - 1) = (- 1, 5; 5, - 1; 1, - 5; - 5, 1)
Giải ra tìm được (x, y) = (2, 1; - 2, 1)
Đưa về PT bậc 2:
12y2−12xy+5x2+4x−1648=012y2−12xy+5x2+4x−1648=0
Xét Δ=(−6x)2−12(5x2+4x−1648)=24[825−(x+1)2]≥0Δ=(−6x)2−12(5x2+4x−1648)=24[825−(x+1)2]≥0
\Rightarrow −29≤x≤27−29≤x≤27
Do x nguyên dương \Rightarrow 0<x≤270<x≤27
PT có nghiệm nguyên \Rightarrow ΔΔ chính phương
\Rightarrow (x+1)2(x+1)2 chia 6 dư 3
\Rightarrow x thuộc 2;5;8;11;14;17;20;23;26
Mà x phải là số chẵn \Rightarrow x thuộc 2;8;14;20;26
Thử 5 số trên.
\(3\left(y^2+4y+4\right)+4x^2+3x-7=0\)
\(\Leftrightarrow3\left(y+2\right)^2=-4x^2-3x+7\)
Do \(3\left(y+2\right)^2\ge0\Rightarrow-4x^2-3x+7\ge0\)
\(\Rightarrow\left(4x+7\right)\left(1-x\right)\ge0\Rightarrow-\frac{7}{4}\le x\le1\)
Do \(x\) nguyên \(\Rightarrow x=\left\{-1;0;1\right\}\)
- Với \(x=-1\Rightarrow3\left(y+2\right)^2=6\Rightarrow\left(y+2\right)^2=2\Rightarrow\) ko có y nguyên t/m
- Với \(x=0\Rightarrow3\left(y+2\right)^2=7\Rightarrow\left(y+2\right)^2=\frac{7}{3}\) ko có y nguyên t/m
- Với \(x=1\Rightarrow3\left(y+2\right)^2=0\Rightarrow y=-2\)
Vậy \(\left(x;y\right)=\left(1;-2\right)\)
\(x^2+y^2=2x^2y^2\)
\(\Rightarrow\frac{x^2+y^2}{x^2y^2}=2\)
\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}=2\left(1\right)\)
Do x,y bình đẳng như nhau,giả sử \(x\ge y\)
\(\Rightarrow x^2\ge y^2\)
Với x<1 thì VT của (1) âm mà vế phải dương.(Loại)
Với x=1 thì thỏa mãn
Với x>1 thì dễ thấy KTM
Vậy....
ta dễ chứng minh được \(x+y\ge\frac{2\sqrt{2}}{5}-\frac{2}{5}\)\(\Rightarrow\)\(x+y+\frac{2\sqrt{2}}{5}-\frac{2}{5}>0\)
\(P=\frac{5\left(x+y+\frac{2\sqrt{2}}{5}-\frac{2}{5}\right)\left(\frac{5}{2}\left(x+y-\left(\frac{2\sqrt{2}}{5}-\frac{2}{5}\right)\right)\left(\frac{5}{2}\left(x+y\right)+\sqrt{2}+1\right)-\frac{9}{4}\left(x-y\right)^2\right)}{\frac{5}{2}\left(x+y\right)+\sqrt{2}+1}\)
\(+\left(\frac{\frac{45}{2}\left(x+y+\frac{2\sqrt{2}}{5}-\frac{2}{5}\right)}{5\left(x+y\right)+\sqrt{2}+1}+\frac{9}{2}\right)\left(x-y\right)^2+6-4\sqrt{2}\ge6-4\sqrt{2}\)
Dấu "=" xảy ra khi \(x=y=\frac{\sqrt{2}-1}{5}\)
Ta chứng minh: \(P\ge6-4\sqrt{2}+\left(2-\sqrt{2}\right)\left(4x^2+4y^2+17xy+5x+5y-11\right)\)
Hay là:
\(\frac{\left(9+4\sqrt{2}\right)\left(98x-298y-130+225\sqrt{2}y+85\sqrt{2}\right)^2}{9604}+\frac{18\left(2\sqrt{2}-1\right)\left(-5y-1+\sqrt{2}\right)^2}{36+16\sqrt{2}}\ge0\)
Việc còn lại là của mọi người.
\(2x^2+3y^2+4x=19\)
<=> \(2\left(x^2+2x+1\right)+3y^2=21\)
<=> \(2\left(x+1\right)^2+3y^2=21\)
<=> \(2\left(x+1\right)^2=21-3y^2\ge0\)
=> \(y^2\le7\)(1)
Mặt khác \(2\left(x+1\right)^2=21-3y^2⋮2\)
=> 21 - 3y^2 là số chẵn => 3y^2 là số lẻ => y^2 là số chính phương lẻ (2)
Từ (1) và (2) => y = 1 hoặc y = - 1=> y^2 = 1
=> 2 (x + 1)^2 = 18 <=> (x + 1 ) = 9 <=> x + 1 = 3 hoặc x + 1 = - 3 <=> x = 2 hoặc x = -4
Vậy phương trình có 4 nghiệm ( 2; 1) (2; -1); (-4; 1 ); (-4; -1)
5x4 - 4x2y + y2 - 85 = 0
<=> (2x2 - y)2 + x4 = 85
Từ đây ta có x4 \(\le85\)
<=> \(0\le x^2\le9\)
Kết hợp với việc 85 phải là tổng của 2 bình phương ta suy ra
\(\hept{\begin{cases}\left(2x^2-y\right)^2=4\\x^4=81\end{cases}}\)
Giải tiếp suy ra nghiệm nguyên cần tìm