Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : \(C\left(x\right)+B\left(x\right)=A\left(x\right)\)
\(\Leftrightarrow C\left(x\right)=A\left(x\right)-B\left(x\right)\)
\(=x^5+3x^4-2x^3-9x^2+11x-6-\left(x^5+3x^4-2x^3-x-8\right)\)
\(=x^5+3x^4-2x^3-9x^2+11x-6-x^5-3x^4+2x^3+x+8\)
\(=-9x^2+12x+2\)
b) Ta có : \(C\left(x\right)=2x+2\)
\(\Leftrightarrow-9x^2+12x+2=2x+2\)
\(\Leftrightarrow\) \(-9x^2+10x=0\)
\(\Leftrightarrow\) \(x\left(-9x+10\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=\frac{10}{9}\end{cases}}\)
c) Giả sử : \(C\left(x\right)=2012\)
\(\Leftrightarrow\)\(-9x^2+12x+2=2012\)
\(\Leftrightarrow-9x^2+12x-2010=0\)
\(\Leftrightarrow\)\(9x^2-12x+2010=0\)
\(\Leftrightarrow\left(9x^2-2.3x.2+4\right)+2006=0\)
\(\Leftrightarrow\left(3x-2\right)^2+2006=0\)(vô nghiệm vì \(\left(3x-2\right)^2\ge0\forall x\inℝ\))
Do đó với x nguyên thì C(x) không thể nhận giá trị bằng 2012.
C(x)= 2x-3=0 hoac 5x+7=0
2x=0+3 5x=0-7
2x=3 5x=-7
x=3:2 x=-7:5
x=1.5 x=-1.4
a.
\(\left(2x-3\right)\times\left(5x+7\right)=0\)
TH1:
\(2x-3=0\)
\(2x=3\)
\(x=\frac{3}{2}\)
TH2:
\(5x+7=0\)
\(5x=-7\)
\(x=-\frac{7}{5}\)
Vậy \(C\left(x\right)\) có nghiệm là \(\frac{3}{2}\) hoặc \(-\frac{7}{5}\)
b.
\(\left(15x^5+4x^2-8\right)-\left(15x^5-x-8\right)=0\)
\(15x^5+4x^2-8-15x^5+x+8=0\)
\(\left(15x^5-15x^5\right)+4x^2+x+\left(8-8\right)=0\)
\(x\left(4x-1\right)=0\)
TH1:
\(x=0\)
TH2:
\(4x-1=0\)
\(4x=1\)
\(x=\frac{1}{4}\)
Vậy \(D\left(x\right)\) có nghiệm là \(0\) hoặc \(\frac{1}{4}\)
c.
\(\left(5x^7-8x^2\right)-\left(4x^7+4^2\right)-\left(x^7+4\right)=0\)
\(5x^7-8x^2-4x^7-16-x^7-4=0\)
\(\left(5x^7-4x^7-x^7\right)-8x^2-\left(16-4\right)=0\)
\(-8x^2-12=0\)
\(-8x^2=12\)
\(x^2=-\frac{12}{8}\)
mà \(x^2\ge0\) với mọi x
=> \(E\left(x\right)\) vô nghiệm
\(a,C\left(x\right)=\left(2x-3\right)\left(5x+7\right)=0\)
\(\Leftrightarrow\) \(\left[\begin{array}{nghiempt}2x-3=0\\5x+7=0\end{array}\right.\) \(\Leftrightarrow\) \(\left[\begin{array}{nghiempt}x=\frac{3}{2}\\x=-\frac{7}{5}\end{array}\right.\)
Vậy \(x=\frac{3}{2}\) và \(x=-\frac{7}{5}\) là nghiệm của đa thức C(x)
\(b,D\left(x\right)=\left(15x^5+4x^2-8\right)-\left(15x^5-x-8\right)=0\)
\(\Leftrightarrow15x^5+4x^2-8-15x^5+x+8=0\)
\(\Leftrightarrow4x^2+x=0\) \(\Leftrightarrow x\left(4x+1\right)=0\) \(\Leftrightarrow\) \(\left[\begin{array}{nghiempt}x=0\\4x+1=0\end{array}\right.\) \(\Leftrightarrow\) \(\left[\begin{array}{nghiempt}x=0\\x=-\frac{1}{4}\end{array}\right.\)
Vậy \(x=0\) và \(x=-\frac{1}{4}\) là nghiệm đa thức D(x)
\(c,E\left(x\right)=\left(5x^7-8x^2\right)-\left(4x^7+4x^4\right)-\left(x^7+4\right)=0\)
\(\Leftrightarrow5x^7-8x^2-4x^7-4x^4-x^7-4=0\)
\(\Leftrightarrow-8x^2-4x^4-4=0\)
\(\Leftrightarrow-4\left(2x^2+x^4+1\right)=0\)
\(\Leftrightarrow2x^2+x^4+1=0\) \(\Leftrightarrow x^4+x^2+x^2+1=0\)
\(\Leftrightarrow x^2\left(x^2+1\right)+\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)^2=0\) \(\Leftrightarrow x^2+1=0\) \(\Leftrightarrow x^2=-1\) \(\Rightarrow x\in\varnothing\)
Vậy E(x) vô nghiệm
1/
a,=>P(x)=2x3-4x2+5x-7-2x3+4x2-x+10=4x+3
=>Q(x)=-9x3-8x2+5x+11+9x3+8x2-2x-7=3x+4
b, Ta có: P(x)=0 => 4x+3=0 => x=-3/4
Q(x)=0 => 3x+4=0 => x=-4/3
c, P(x)+Q(x)=4x+3+3x+4=7x+7
P(x)-Q(x)=4x+3-(3x+4)=4x+3-3x-4=x-1
2/
a, x2-5x-6=0
=>x2-6x+x-6=0
=>x(x-6)+(x-6)=0
=>(x+1)(x-6)=0
=>\(\orbr{\begin{cases}x+1=0\\x-6=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=6\end{cases}}}\)
b, (x+1)(x2+1)=0
Vì x2+1>0
=>x+1=0=>x=-1
c, \(-x^2-\frac{2}{5}=0\Rightarrow-x^2=\frac{2}{5}\Rightarrow x^2=\frac{-2}{5}\)
mà x2 lớn hoặc bằng 0 => không có x thỏa mãn
d, \(2x^2-x-6=0\Rightarrow2x^2-4x+3x-6=0\)
=>2x(x-2)+3(x-2)=0
=>(2x+3)(x-2)=0
=>\(\orbr{\begin{cases}2x+3=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-\frac{3}{2}\\x=2\end{cases}}}\)
3/
a, P(x)=(5x3-x3-4x3)+(2x4-x4)+(-x2+3x2)+1=x4+2x2+1
b, P(1)=14+2.12+1=1+2+1=4
P(-1)=(-1)4+2.(-1)2+1=1+2+1=4
c, Vì \(x^4\ge0;2x^2\ge0\Rightarrow x^4+2x^2\ge0\Rightarrow P\left(x\right)=x^4+2x^2+1\ge1>0\)
Vậy P(x) khoogn có nghiệm
a)A(x)=3x5-12x3-6x2+11x+9
B(x)=-3x5+12x3+7x2-9x-7
b)A(x)+B(x)=
3x5-12x3-6x2+11x+9
+
-3x5+12x3+7x2-9x-7
= x2+2x+2
Vậy C(x)=x2+2x+2
A(x)-B(x)=
3x5-12x3-6x2+11x+9
-
-3x5+12x3+7x2-9x-7
= 6x5-24x3-13x2+20x+16
Vậy D(x)=6x5-24x3-13x2+20x+16
c)C(x)=x2+2x+2=x2+2x+1+1=(x+1)2+1
Do (x+1)2\(\ge0\forall x\in R\)
=>C(x)=(x+1)2+1\(\ge1\forall x\in R\)
a) Cho P(x) = x^2 + 11x + 30 =0
P(x) = x^2 + 6x + 5x + 30 =0
P(x) = x. ( x+ 6) + 5.( x + 6 ) = 0
P( x) = ( x+6) . ( x+5 ) = 0
=> x+6 = 0 => x + 5 = 0
x = -6 x = -5
KL: x = -6; x = -5 là nghiệm của P(x)
bn dựa vào phần a mak lm phần b nha!!!!!
\(A,\)\(9x-\left(11x+8\right)=0\)
\(9x-11x-8=0\)
\(-2x-8=0\)
\(-2\left(x+4\right)=0\)
\(\Rightarrow x-4=0\)
\(\Rightarrow x=4\)
Vậy A có nghiệm là 4
\(B,\)\(x^4+x^2+5=0\)
\(\Rightarrow x^4+\frac{1}{2}x^2+\frac{1}{2}x^2+\frac{1}{4}-\frac{1}{4}+5=0\)
\(\Rightarrow x^2\left(x^2+\frac{1}{2}\right)+\frac{1}{2}\left(x^2+\frac{1}{2}\right)+\frac{19}{20}=0\)
\(\Rightarrow\left(x^2+\frac{1}{2}\right)\left(x^2+\frac{1}{2}\right)+\frac{19}{20}=0\)
\(\Rightarrow\left(x^2+\frac{1}{2}\right)^2+\frac{19}{20}=0\)
Vì \(\left(x^2+\frac{1}{2}\right)^2\ge0\)
\(\Rightarrow\left(x^2+\frac{1}{2}\right)^2+\frac{19}{20}=0\)( vô lí )
Vậy phương trình vô nghiệm