Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x = -(29997940*i+27069339)/53041780;x = -(10729435*i-30293851)/29983820;x = (10729435*i+30293851)/29983820;x = (29997940*i-27069339)/53041780;
f(x)=3x^2+1x
=3x^2+x
=x(3x+1)=0
\(\Rightarrow\)x=0 hoặc 3x+1=0
\(\Rightarrow\orbr{\begin{cases}x=0\\x=-\frac{1}{3}\end{cases}}\)
vậy x=0; x=-1/3 là nghiệm của đa thức f(x)
` 1x + 3x^2 =0`
` x( 3x + 1) = 0`
\(=>\left[{}\begin{matrix}x=0\\3x+1=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=\dfrac{-1}{3}\end{matrix}\right.\)
Vậy.....
Ta có :\(3x^2+1x\)
\(\Rightarrow x\left(3x+1\right)=0\)(Áp dụng tính chất phân phối của phép tính)
\(\Rightarrow\orbr{\begin{cases}x=0\\3x+1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\3x=-1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{-1}{3}\end{cases}}\)
Vậy nghiệm của đa thức trên là \(0\)và \(\frac{-1}{3}\).
Chúc bạn học tốt !!!
Ta có : \(H\left(x\right)=0\Leftrightarrow3x^2+x=0\)
\(\Leftrightarrow\left(3x+1\right)x=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x+1=0\\x=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x=-1\\x=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{3}\\x=0\end{cases}}\)
Vậy nghiệm của đa thức H(x) là x = \(\frac{-1}{3}\); x = 0
\(P\left(x\right)-Q\left(x\right)=3x^2+x-\left(-3x^2\right)+2x-2\)
=\(-3x^2+x+3x^2-2x+2\)
=\(\left(-3x^2+3x^2\right)+\left(x-2x\right)+2\)
=-x+2
Đặt -x+2=0
=>-x=-2
=>x=2
Vậy 2 là nghiệm của đa thức P(x)-Q(x)
\(x^2-3x-4=0\)
\(< =>x^2+x-4x-4=0\)
\(< =>x\left(x+1\right)-4\left(x+1\right)=0\)
\(< =>\left(x-4\right)\left(x+1\right)=0\)
\(< =>\orbr{\begin{cases}x=4\\x=-1\end{cases}}\)
\(2x^3-x^2-2x+1=0\)
\(< =>x^2\left(2x-1\right)-\left(2x-1\right)=0\)
\(< =>\left(x^2-1\right)\left(2x-1\right)=0\)
\(< =>\left(x-1\right)\left(x+1\right)\left(2x+1\right)=0\)
\(< =>\hept{\begin{cases}x=1\\x=-1\\x=-\frac{1}{2}\end{cases}}\)
ta có: H(x)=0 <=> \(3x^4-3x^2\)=0
=> \(3x^2x^2-3x^2\)=0
=> \(3x^2\left(x^2-1\right)=0\)
=> \(\orbr{\begin{cases}3x^2=0\Rightarrow x=0\\x^2-1=0\Rightarrow x=1\end{cases}}\)
vậy x=0, x=1 là nghiệm của đa thức H(x)
Ta có: Cho H(x) = 0
=> 3x4 - 3x2 = 0
=> 3x2.(x2 - 1) = 0
=> \(\orbr{\begin{cases}3x^2=0\\x^2-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}x^2=0\\x^2=1\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
Vậyx thuộc {0; 1; -1} là nghiệm của đa thức H(x)