Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f_{\left(x\right)}-g_{\left(x\right)}=2x^5+x^4+1x^2+x+1-\left(2x^5+x^4-x^2+1\right)\)
\(=2x^5+x^4+1x^2+x+1-2x^5-x^4+x^2-1\)
\(=\left(2x^5-2x^5\right)+\left(x^4-x^4\right)+\left(1x^2+x^2\right)+x+\left(1-1\right)\)
\(=2x^2+x\)
+, Đặt \(2x^2+x=0\)
\(\Leftrightarrow x.2x=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x=0\end{cases}}\Leftrightarrow x=0\)
\(A\left(x\right)=2x^2-11x+5\)
\(A\left(x\right)=2x^2-x-10x+5\)
\(A\left(x\right)=x\left(2x-1\right)-5\left(2x-1\right)\)
\(A\left(x\right)=\left(2x-1\right)\left(x-5\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\x-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=5\end{matrix}\right.\)
a)f(x)=-x5-7x4-2x3+x2+4x+9
g(x)=x5+7x4+2x3+2x2-3x-9
b)h(x)=f(x)+g(x)
=(-x5-7x4-2x3+x2+4x+9)+(x5+7x4+2x3+2x2-3x-9)
=-x5-7x4-2x3+x2+4x+9+x5+7x4+2x3+2x2-3x-9
=-x5+x5-7x4+7x4-2x3+2x3+x2+2x2+4x-3x+9-9
=3x2+x
Vậy h(x)=3x2+x
c)ta có h(x)=0
=>3x2+x=0
x(3x+1)=0
x=0 hoặc 3x+1=0
x=0 hoặc x=-1/3
vậy nghiệm của đa thức h(x) là x=0 hoặc x=-1/3
Bài 1:
a) \(x^2+7x-8=x^2+2.x.\frac{7}{2}+\frac{49}{4}-\frac{81}{4}\)
\(=\left(x+\frac{7}{2}\right)^2-\frac{81}{4}=0\)
\(\Rightarrow\left(x+\frac{7}{2}\right)^2=\frac{81}{4}\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{7}{2}=\frac{9}{2}\\x+\frac{7}{2}=\frac{-9}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-8\end{cases}}\)
Vậy nghiệm của đa thức m(x) là 1 hoặc -8
b) \(\left(x-3\right)\left(16-4x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\16-4x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=4\end{cases}}\)
Vậy nghiệm của đa thức g(x) là 3 hoặc 4
c) \(5x^2+9x+4=0\)
\(\Rightarrow x^2+\frac{9}{5}x+\frac{4}{5}=0\)
\(\Rightarrow x^2+2x.\frac{9}{10}+\frac{81}{100}-\frac{1}{100}=0\)
\(\Rightarrow\left(x+\frac{9}{10}\right)^2-\frac{1}{100}=0\)
\(\Rightarrow\left(x+\frac{9}{10}\right)^2=\frac{1}{100}\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{9}{10}=\frac{1}{10}\\x+\frac{9}{10}=\frac{-1}{10}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-4}{5}\\x=-1\end{cases}}\)
Vậy...
a) Ta có: \(x^3-x^2+x-1=0\)
\(\Rightarrow x^2\left(x-1\right)+\left(x-1\right)=0\)
\(\Rightarrow\left(x^2+1\right)\left(x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2+1=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x^2=-1\left(loại\right)\\x=1\end{matrix}\right.\)
Vậy x = 1 là nghiệm của đa thức f(x)
b, c: @Ace Legona
a)\(f\left(x\right)=x^3-x^2+x-1\)
Cho \(f\left(x\right)=0\Rightarrow x^3-x^2+x-1=0\)
\(\Rightarrow x^2\left(x-1\right)+\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(x^2+1\right)=0\)
Dễ thấy: \(x^2+1\ge1>0\forall x\) ( vô nghiệm )
\(\Rightarrow x-1=0\Rightarrow x=1\)
b)\(g\left(x\right)=11x^3+5x^2+4x+10\)
Cho \(g\left(x\right)=0\Rightarrow11x^3+5x^2+4x+10=0\)
\(\Rightarrow11x^3-6x^2+10x+11x^2-6x+10=0\)
\(\Rightarrow x\left(11x^2-6x+10\right)+\left(11x^2-6x+10\right)=0\)
\(\Rightarrow\left(x+1\right)\left(11x^2-6x+10\right)=0\)
Dễ thấy:
\(11x^2-6x+10=11\left(x-\dfrac{3}{11}\right)^2+\dfrac{101}{11}\ge\dfrac{101}{11}>0\forall x\) (vô nghiệm)
\(\Rightarrow x+1=0\Rightarrow x=-1\)
c)\(h\left(x\right)=-17x^3+8x^2-3x+12\)
Cho \(h\left(x\right)=0\Rightarrow-17x^3+8x^2-3x+12=0\)
\(\Rightarrow17x^2+9x+12-17x^3-9x^2-12x=0\)
\(\Rightarrow\left(17x^2+9x+12\right)-x\left(17x^2+9x+12\right)=0\)
\(\Rightarrow\left(1-x\right)\left(17x^2+9x+12\right)=0\)
Dễ thấy:
\(17x^2+9x+12=17\left(x+\dfrac{9}{34}\right)^2+\dfrac{735}{68}\ge\dfrac{735}{68}>0\forall x\)(vô nghiệm)
\(\Rightarrow1-x=0\Rightarrow x=1\)
Vì đa thức g(x) là đa thức bậc 3 và mọi nghiệm của f(x) cũng là của g(x) nên:
G/s \(g\left(x\right)=\left(x-1\right)\left(x+3\right)\left(x-c\right)\) \(\left(c\inℝ\right)\)
Khi đó: \(x^3-ax^2+bx-3=\left(x-1\right)\left(x+3\right)\left(x-c\right)\)
\(\Leftrightarrow x^3-ax^2+bx-3=\left(x^2+2x-3\right)\left(x-c\right)\)
\(\Leftrightarrow x^3-ax^2+bx-3=x^3-\left(c-2\right)x^2-\left(2c+3\right)x+3c\)
Đồng nhất hệ số ta được:
\(\hept{\begin{cases}a=c-2\\b=-2c-3\\c=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-3\\b=-1\\c=-1\end{cases}}\)
Vậy a = -3 , b = -1
a) x3-x2+x-1=0
=>(x3-x2)+(x-1)=0
=>x2(x-1)+(x-1)=0
(x-1)(x2+1)=0
Ta có \(x^2+1>0\) ( vì \(x^2\ge0\) )
=>x-1=0
x=1
Vậy x=1 là nghiệm của f(x)
b)11x3+5x2+4x+10=0
=>(10x3+10)+(x3+x2)+(4x2+4x)=0
=>10(x3+1)+x2(x+1)+4x(x+1)=0
10(x+1)(x2-x+1)+x2(x+1)+4x(x+1)=0
(x+1)[10(x2-x+1)+x2+4x]=0
(x+1)(11x2-6x+10)=0
(x+1)[(9x2-2.3x+1)+9]=0
(x+1)[(3x-1)2+2x2+9]=0
=>x+1=0
x=-1
Vậy -1 là nghiệm của y(x)
c)-17x3+8x2-3x+12=0
\(f\left(x\right)=\left(x-1\right)\left(x-3\right)=0\)
\(\Rightarrow\hept{\begin{cases}x-1=0\\x-3=0\end{cases}}\Rightarrow\hept{\begin{cases}x-1\\x-3\end{cases}}\)
=> x = 1 và x = 3 là nghiệm của đa thức f(x)
Mà nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x)
=> nghiệm của đa thức g(x) là x = { 1; 3 }
Với x = 1 thì \(g\left(x\right)=1^3-a.1^2+b.1-3=0\)
\(\Rightarrow-a+b=2\)(1)
Với x = 3 thì \(g\left(x\right)=3^3-a.3^2+3b-3=0\)
\(\Rightarrow3a-b=8\)(2)
Cộng vế với vế của (1) và (2) ta được : ( - a + b ) + (3a - b) = 10
=> 2a = 10 => a = 5
=> - 5 + b = 2 => b = 7
Vậy a = 5 ; b = 7
(x-1)(x-3)=0
=>x-1=0 hoặc x-3=0
=>x=1 hoặc x=3
Vậy nghiệm của f(x) là 1 và 3
Nghiệm của g(x) cũng là 1 và 3
Với x=1 ta có g(x)=1+a+b-3=0
=>a+b-2=0
a+b=2
Với x=3 ta có g(x)=27-9a+3b-3=0
=>24-9a+3b=0
=>8-3a+b=0
=>3a-b=8
a=\(\frac{8+b}{3}\)
Vậy với a+b=2 hoặc \(a=\frac{8+a}{3}\) thì nghiệm của đa thức f(x) cũng là nghiệm của g(x)
dsahsfgfthsgdgfbbbbshsgfhdgjmafhtgyaemtjfbheyhfmyngehmrjbfgywagejmfhrbhhjgf
Trả lời:
\(g\left(x\right)=2x^3-11x^2-23x+14=0\)
\(\Leftrightarrow2x^3-14x^2+3x^2-21x-2x+14=0\)
\(\Leftrightarrow2x^2.\left(x-7\right)+3x.\left(x-7\right)-2.\left(x-7\right)=0\)
\(\Leftrightarrow\left(x-7\right).\left(2x^2+3x-2\right)=0\)
\(\Leftrightarrow\left(x-7\right).\left(2x^2-x+4x-2\right)=0\)
\(\Leftrightarrow\left(x-7\right).\left[x.\left(2x-1\right)+2.\left(2x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-7\right).\left(2x-1\right).\left(x+2\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x-7=0\\2x-1=0\\x+2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=7\\x=\frac{1}{2}\\x=-2\end{cases}}\)
Vậy đa thức có 3 nghiêm \(x=\left\{7,\frac{1}{2},-2\right\}\)