Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ \(x+\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}}=x+\sqrt{\left(x+\frac{1}{4}\right)+\sqrt{x+\frac{1}{4}}+\frac{1}{4}}\)
\(=x+\sqrt{\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2}=x+\left|\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right|=\left(x+\frac{1}{4}\right)+\sqrt{x+\frac{1}{4}}+\frac{1}{4}\)
\(=\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2\)
\(\Rightarrow m=\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2\)
Để pt trên có nghiệm thì \(\hept{\begin{cases}m>0\\\sqrt{m}-\frac{1}{2}\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}m>0\\m\ge\frac{1}{4}\end{cases}}\Leftrightarrow m\ge\frac{1}{4}\)
Vậy với \(m\ge\frac{1}{4}\) thì pt trên có nghiệm.
Phương trình trên chỉ có một nghiệm thôi nhé, đó là \(x=m-\sqrt{m}\) với \(m\ge\frac{1}{4}\)
Đề là \(\sqrt{x_1^2+1}\sqrt{x_1^2+1}\)hay là \(\sqrt{x_1^2+1}\sqrt{x_2^2+1}\)
làm theo đề là \(\sqrt{x_1^2+1}\sqrt{x_2^2+1}\)
ta có để PT \(x^2-3x+m=0\)có 2 nghiệm phân biệt
=>\(\Delta=\left(-3\right)^2-4m>0< =>9>4m< =>m< \frac{9}{4}\)
theo Vi-ét
=>\(\hept{\begin{cases}x_1+x_2=3\\x_1.x_2=m\end{cases}}\)(1)
Ta có:
\(\sqrt{x_1^2+1}\sqrt{x_2^2+1}=3\sqrt{3}< =>\left(x_1^2+1\right)\left(x_2^2+1\right)=\left(3\sqrt{3}\right)^2=27\)
\(=>\left(x_1x_2\right)^2+x_2^2+x_1^2+1=27< =>x_1^2x_2^2+\left(x_1+x_2\right)^2-2x_1x_2=26\)
thay (1) vào :\(m^2+9-2m=26< =>m^2-2m-17=0< =>\orbr{\begin{cases}m=1+3\sqrt{2}\\m=1-3\sqrt{2}\end{cases}}\)
Mà \(m< \frac{9}{4}=>m=1-3\sqrt{2}\)
\(x^2=8-2\sqrt{2+\sqrt{3}}-2\sqrt{3.\left(2-\sqrt{3}\right)}\)
\(\Leftrightarrow8-x^2=2\sqrt{2+\sqrt{3}}+2\sqrt{3.\left(2-\sqrt{3}\right)}\)
\(\Leftrightarrow x^4-16x^2+64=4\left(2+\sqrt{3}+6-3\sqrt{3}+2\sqrt{3}\right)\)
\(\Leftrightarrow x^4-16x^2+64=32\)
\(\Leftrightarrow x^4-16x^2+32=0\)
Vậy có điều phải chứng minh.
\(1)\) ĐKXĐ : \(x\ge3\)
\(\sqrt{x^2-4x+3}+\sqrt{x-1}=0\)
\(\Leftrightarrow\)\(\sqrt{\left(x^2-4x+4\right)-1}+\sqrt{x-1}=0\)
\(\Leftrightarrow\)\(\sqrt{\left(x-2\right)^2-1}+\sqrt{x-1}=0\)
\(\Leftrightarrow\)\(\sqrt{\left(x-2-1\right)\left(x-2+1\right)}+\sqrt{x-1}=0\)
\(\Leftrightarrow\)\(\sqrt{\left(x-3\right)\left(x-1\right)}+\sqrt{x-1}=0\)
\(\Leftrightarrow\)\(\sqrt{x-1}\left(\sqrt{x-3}+1\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}\sqrt{x-1}=0\\\sqrt{x-3}+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x\in\left\{\varnothing\right\}\end{cases}}}\)
Vậy \(x=1\)
\(2)\)\(\sqrt{x^2-2x+1}-\sqrt{x^2-6x+9}=10\)
\(\Leftrightarrow\)\(\sqrt{\left(x-1\right)^2}-\sqrt{\left(x-3\right)^2}=10\)
\(\Leftrightarrow\)\(\left|x-1\right|-\left|x-3\right|=10\)
+) Với \(\hept{\begin{cases}x-1\ge0\\x-3\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\ge3\end{cases}\Leftrightarrow}x\ge3}\) ta có :
\(x-1-x+3=10\)
\(\Leftrightarrow\)\(0=8\) ( loại )
+) Với \(\hept{\begin{cases}x-1< 0\\x-3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 1\\x< 3\end{cases}\Leftrightarrow}x< 1}\) ta có :
\(1-x+x-3=10\)
\(\Leftrightarrow\)\(0=12\) ( loại )
Vậy không có x thỏa mãn đề bài
Chúc bạn học tốt ~
PS : mới lp 8 sai đừng chửi nhé :v
a)\(\sqrt{x^2-2x+1}-\sqrt{x^2-4x+4}=x-3\)
\(\Leftrightarrow\left(\sqrt{x^2-2x+1}-3\right)-\left(\sqrt{x^2-4x+4}-2\right)=x-3-1\)
\(\Leftrightarrow\frac{x^2-2x+1-9}{\sqrt{x^2-2x+1}+3}-\frac{x^2-4x+4-4}{\sqrt{x^2-4x+4}+2}=x-4\)
\(\Leftrightarrow\frac{x^2-2x-8}{\sqrt{x^2-2x+1}+3}-\frac{x^2-4x}{\sqrt{x^2-4x+4}+2}-\left(x-4\right)=0\)
\(\Leftrightarrow\frac{\left(x+2\right)\left(x-4\right)}{\sqrt{x^2-2x+1}+3}-\frac{x\left(x-4\right)}{\sqrt{x^2-4x+4}+2}-\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{x+2}{\sqrt{x^2-2x+1}+3}-\frac{x}{\sqrt{x^2-4x+4}+2}-1\right)=0\)
Dễ thấy: \(\frac{x+2}{\sqrt{x^2-2x+1}+3}-\frac{x}{\sqrt{x^2-4x+4}+2}-1< 0\)
\(\Rightarrow x-1=0\Rightarrow x=1\)
b)\(\sqrt{x^2-6x+9}-\sqrt{x^2+6x+9}=1\)
\(\Leftrightarrow\left(\sqrt{x^2-6x+9}-\frac{7}{2}\right)-\left(\sqrt{x^2+6x+9}-\frac{5}{2}\right)=0\)
\(\Leftrightarrow\frac{x^2-6x+9-\frac{49}{4}}{\sqrt{x^2-6x+9}+\frac{7}{2}}-\frac{x^2+6x+9-\frac{25}{4}}{\sqrt{x^2+6x+9}+\frac{5}{2}}=0\)
\(\Leftrightarrow\frac{\frac{4x^2-24x-13}{4}}{\sqrt{x^2-6x+9}+\frac{7}{2}}-\frac{\frac{4x^2+24x+11}{4}}{\sqrt{x^2+6x+9}+\frac{5}{2}}=0\)
\(\Leftrightarrow\frac{\frac{\left(2x-13\right)\left(2x+1\right)}{4}}{\sqrt{x^2-6x+9}+\frac{7}{2}}-\frac{\frac{\left(2x+1\right)\left(2x+11\right)}{4}}{\sqrt{x^2+6x+9}+\frac{5}{2}}=0\)
\(\Leftrightarrow\left(2x+1\right)\left(\frac{\frac{2x-13}{4}}{\sqrt{x^2-6x+9}+\frac{7}{2}}-\frac{\frac{2x+11}{4}}{\sqrt{x^2+6x+9}+\frac{5}{2}}\right)=0\)
Dễ thấy: \(\frac{\frac{2x-13}{4}}{\sqrt{x^2-6x+9}+\frac{7}{2}}-\frac{\frac{2x+11}{4}}{\sqrt{x^2+6x+9}+\frac{5}{2}}< 0\)
\(\Rightarrow2x+1=0\Rightarrow x=-\frac{1}{2}\)
c)Áp dụng BĐT CAuchy-Schwarz ta có:
\(P^2=\left(\sqrt{x-2}+\sqrt{4-x}\right)^2\)
\(\le\left(1+1\right)\left(x-2+4-x\right)\)
\(=2\cdot\left(x-2+4-x\right)=2\cdot2=4\)
\(\Rightarrow P^2\le4\Rightarrow P\le2\)
\(p+q=0\Rightarrow q=-p\)
\(\Rightarrow x^2+px-p=0\) (1)
Do nghiệm pt là nguyên nên delta là SCP hay \(\Delta=p^2+4p=k^2\)
\(\Leftrightarrow\left(p+2\right)^2-4=k^2\Rightarrow\left(p+2\right)^2-k^2=4\)
\(\Rightarrow\left(p+2-k\right)\left(p+2+k\right)=4\)
Pt ước số cơ bản, bạn tự tính p sau đó thay vào (1) giải ra x, cái nào nguyên thì nhận
b/ \(\Leftrightarrow\sqrt{\left(3-x\right)^2}+\sqrt{\left(x+5\right)^2}=8\)
\(\Leftrightarrow\left|3-x\right|+\left|x+5\right|=8\)
Mặt khác ta có \(\left|3-x\right|+\left|x+5\right|\ge\left|3-x+x+5\right|=8\)
Dấu "=" xảy ra khi và chỉ khi \(\left(3-x\right)\left(x+5\right)\ge0\)
\(\Rightarrow-5\le x\le3\)
\(\Rightarrow\) Nghiệm của pt đã cho là \(-5\le x\le3\)
b) Ta có: \(\sqrt{x^2-6x+9}+\sqrt{x^2+10x+25}=8\)
\(\Leftrightarrow\left|x-3\right|+\left|x+5\right|=8\)(*)
Trường hợp 1: x<-5
(*)\(\Leftrightarrow3-x-x-5=8\)
\(\Leftrightarrow-2-2x=8\)
\(\Leftrightarrow-2\left(1+x\right)=8\)
\(\Leftrightarrow1+x=-4\)
hay x=-5(loại)
Trường hợp 2: -5≤x≤3
(*)\(\Leftrightarrow3-x+x+5=8\)
\(\Leftrightarrow8=8\)
hay x∈[-5;3]
Trường hợp 2: x>3
(*)\(\Leftrightarrow x-3+x+5=8\)
\(\Leftrightarrow2x+2=8\)
\(\Leftrightarrow2x=6\)
hay x=3(loại)
Vậy: S=[-5;3]
ĐKXĐ: \(x\ge3\)
\(pt\Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+\sqrt{x-3}=0\)
\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}+1\right)=0\)
\(\Leftrightarrow x-3=0\Leftrightarrow x=3\left(tm\right)\)(do \(\sqrt{x+3}+1\ge1>0\))
\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}+1\right)=0\)
hay x=3