Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án :
1- C
2-A
3-B
4-D
5-
6-D
7-A
8-B
9-
10-D
11-
12-B
13-B
14-C
15-
16-D
17-
18-D
19-D
20-D
Câu 1:Trong các pt sau đây, pt nào là pt bậc nhất một ẩn
A.x-1=x+2 B.(x-1)(x+2)=0 C.ax+b=0 D.2x+1=3x+5
Câu2: x=-2 là nghiệm của pt nào ?
A.3x-1=x-5 B.2x-1=x+3 C.x-3=x-2 D.3x+5=-x-2
Câu 3: x-4 là nghiệm của pt
A.3x-1=x-5 B.2x-1=x+3 C.x-3=x-2 D.3x+5=-x-2
Câu 4: Pt x+9=9+x có nghiệm là
A.S=R B.S=9 C.S rỗng D. S thuộc R
Câu 5: cho 2pt: x(x-1)=0(1) và 3x-3=0 (2)
A.(1) tương đương (2) B.(1) là hệ quả của pt (2)
C.(2) là hệ quả của pt (1) D. Cả 3 sai
Câu 6: Pt x2x2=-4 có nghiệm là
A. Một nghiệm x=2 B. Có hai nghiệm x=-2;x=2
C.Mộe nghiệm x=-2 D. Vô nghiệm
Câu 7: Chọn kết quả đúng
A. x2=3xx2=3x <=> x(x-3) =0 B.(x−1)2−25(x−1)2−25= 0 <=> x=6
C. x2x2 =9 <=> x=3 D.x2x2 =36<=> x=-6
Câu 8: Cho biết 2x-4=0. Tính 3x-4=
A. 0 B. 2 C. 17 D. 11
Câu 9: Pt (2x-3)(3x-2)=6x(x-50)+44 có tập nghiệm
A. S={2}{2} B. S={2;−3}{2;−3} C. S={2;13}{2;13} D. S={2;0;3}{2;0;3}
Câu 10: Pt 3x-5x+5=-8 có nghiệm là
A. x=-2323 B. x=2323 C. x=4 D. Kết quả khác
Câu 11: Giá trị của b để pt 3x+6=0 có nghiệm là x=-2
A.4 B. 5 C. 6 D. Kết quả khác
Câu 12: Pt 2x+k=x-1 nhận x=2 là nghiệm khi
A. k=3 B. k=-3 C. k=0 D.k=1
Câu 13: Pt m(x-1)=5-(m-1)x vô nghiệm nếu
A. m=1414 B. m=1212 C.m=3434 D. m=1
Câu 14: Pt x2x2 -4x+3=0 có nghiệm là
A. {1;2}{1;2} B. {2;3}{2;3} C. {1;3}{1;3} D. {2;4}{2;4}
Câu 15: Pt x2x2 -4x+4=9(x−2)2(x−2)2 có nghiệm là
A. {2}{2} B. {−2;2}{−2;2} C. {−2}{−2} D. Kết quả khác
Câu 16: Pt 1x+2+3=3−xx−21x+2+3=3−xx−2 có nghiệm
A.1 B. 2 C. 3 D. Vô nghiệm
Câu 17: Pt x+2x−2−2x(x−2)=1xx+2x−2−2x(x−2)=1x có nghiệm là
A. {−1}{−1} B. {−1;3}{−1;3} C. {−1;4}{−1;4} D. S=R
Câu 18: Pt x2(x−3)+x2(x+1)=2x(x+1)(x+3)x2(x−3)+x2(x+1)=2x(x+1)(x+3) có nghiệm là
A. -1 B. 1 C. 2 D. Kết quả khác
Câu 19: Pt x2+2xx2+1−2x=0x2+2xx2+1−2x=0 có nghiệm là
A. -2 B.3 C. -2 và 3 D. kết quả khác
Câu 20: ĐKXĐ của Pt 3x+2x+2+2x−11x2−4−32−x3x+2x+2+2x−11x2−4−32−x là
A. x−23−23; x≠112≠112 B. x≠≠2 C. x>0 D. x≠≠ 2 và x≠≠ -2
a) x=3 có: 3(m-1) -m+5 =0
3m-3-m+5 =0 => m = -1
b) nếu m=1 có: (m-1)x = 0 => (m-1)x -m +5 = 0 => 4=0 vô lý
c) (m-1)x -m+5 =0 => x = (m-5)/(m-1)
+ nếu m=1 vô nghiệm
+ m khác 1 pt có nghiệm x =(m-5)/(m-1)
a)Thay m=-1 vào phương trình ta đc:
\(4.\left(-1\right)^2.x-4x-3.\left(-1\right)=3\)
\(\Leftrightarrow4x-4x+3=3\)
\(\Leftrightarrow0x=0\)(Luôn đúng)
\(\Leftrightarrow\)Pt có vô số nghiệm
Vậy pt có vô số nghiệm.
b)Thay x=2 vào phương trình ta có:
\(4m^2.2-4.2-3m=3\)
\(\Leftrightarrow8m^2-8-3m=3\)
\(\Leftrightarrow8m^2-3m-11=0\)
\(\Leftrightarrow8m^2+8m-11m-11=0\)
\(\Leftrightarrow8m\left(m+1\right)-11\left(m+1\right)=0\)
\(\Leftrightarrow\left(m+1\right)\left(8m-11\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}m+1=0\\8m-11=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}m=-1\\m=\frac{11}{8}\end{cases}}\)
Vậy tập nghiệm của pt là S={-1;\(\frac{11}{8}\)}
c)Ta có:
\(5x-\left(3x-2\right)=6\)
\(\Leftrightarrow5x-3x+2=6\)
\(\Leftrightarrow2x=4\)
\(\Leftrightarrow x=2\)
Có x=2 là nghiệm của pt \(5x-\left(3x-2\right)=6\)
Để \(4m^2x-4x-3m=3\Leftrightarrow5x-\left(3x-2\right)=6\)
\(\Leftrightarrow\)x=2 là nghiệm của \(4m^2x-4x-3m=3\)
Thay x=2 vào pt trên ta đc:
\(4m^2.2-4.2-3m=3\)(Giống câu b)
Vậy m=-1,m=11/8...
d)Có:\(4m^2x-4x-3m=3\)
\(\Leftrightarrow4x\left(m^2-1\right)=3+3m\)
Để pt vô nghiệm
\(\Leftrightarrow\hept{\begin{cases}m^2-1=0\\3+3m\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m=\pm1\\m\ne-1\end{cases}}\)
\(\Leftrightarrow m=1\)
Vậy m=1 thì pt vô nghiệm.
a) Khi \(m=-4\) phương trình trở thành:
\(\left[\left(-4\right)^2+5.\left(-4\right)+4\right]x^2=-4+4\)
\(\Leftrightarrow0.x^2=0\)
Đúng với mọi x.
b) Khi \(m=-1\) phương trình trở thành:
\(\left[\left(-1\right)^2+5.\left(-1\right)+4\right]x^2=-1+4\)
\(\Leftrightarrow0.x^2=3\)
Phương trình vô nghiệm.
c) Khi \(m=-2\) phương trình trở thành:
\(\left[\left(-2\right)^2+5.\left(-2\right)+4\right]x^2=-2+4\)
\(\Leftrightarrow-2.x^2=2\)
\(\Leftrightarrow x^2=-1\)
Phương trình này cũng vô nghiệm.
Khi \(m=-3\) phương trình trở thành:
\(\left[\left(-3\right)^2+5.\left(-3\right)+4\right]x^2=-3+4\)
\(\Leftrightarrow-2x^2=1\)
\(\Leftrightarrow x^2=-\dfrac{1}{2}\)
Phương trình cũng vô nghiệm.
d) Khi \(m=0\) phương trình trở thành:
\(\left[0^2+5.0+4\right]x^2=0+4\)
\(\Leftrightarrow4x^2=4\)
\(\Leftrightarrow x^2=1\)
Phương trình có hai nghiệm là \(x=1,x=-1\).
a. Nhân hai vế của phương trình (1) với 24, ta được:\(\frac{7x}{8}\)−5(x−9)⇔\(\frac{1}{6}\)(20x+1,5)⇔21x−120(x−9)=4(20x+1,5)⇔21x−120x−80x=6−1080⇔−179x=−1074⇔x=67x8−5(x−9)⇔16(20x+1,5)⇔21x−120(x−9)=4(20x+1,5)⇔21x−120x−80x=6−1080⇔−179x=−1074⇔x=6
Vậy phương trình (1) có một nghiệm duy nhất x = 6.
b. Ta có:
2(a−1)x−a(x−1)=2a+3⇔(a−2)x=a+32(a−1)x−a(x−1)=2a+3⇔(a−2)x=a+3 (3)
Do đó, khi a = 2, phương trình (2) tương đương với phương trình 0x = 5.
Phương trình này vô nghiệm nên phương trình (2) vô nghiệm.
c. Theo điều kiện của bài toán, nghiệm của phương trình (2) bằng một phần ba nghiệm của phương trình (1) nên nghiệm đó bằng 2. Do (3) nên phương trình (2) có nghiệm x = 2 cũng có nghĩa là phương trình (a−2)2=a+3(a−2)2=a+3 có nghiệm x = 2. Thay giá trị x = 2 vào phương trình này, ta được(a−2)2=a+3(a−2)2=a+3. Ta coi đây là phương trình mới đối với ẩn a. Giải phương trình mới này:
(a−2)2=a+3⇔a=7(a−2)2=a+3⇔a=7
Khi a = 7, dễ thử thấy rằng phương trình (a−2)x=a+3(a−2)x=a+3 có nghiệm x = 2, nên phương trình (2) cũng có nghiệm x = 2.
C
C.Vô nghiệm
Vì `|x-1|>=0`
Mà `-4<0`
`=>VT>VP`
`=>` vô nghiệm