Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
a) \(x^3-x^2-x-2=0\)
\(\Leftrightarrow x^3-2x^2+x^2-2x+x-2=0\)
\(\Leftrightarrow\left(x^3-2x^2\right)+\left(x^2-2x\right)+\left(x-2\right)=0\)
\(\Leftrightarrow x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+x+1\right)=0\)(1)
Vì \(x^2+x+1=x^2+2.\frac{1}{2}.x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
\(\Rightarrow x^2+x+1\ge\frac{3}{4}\forall x\)(2)
Từ (1) và (2) \(\Rightarrow x-2=0\)\(\Leftrightarrow x=2\)
Vậy \(x=2\)
Bài 2:
\(2x^2+y^2-2xy+2y-6x+5=0\)
\(\Leftrightarrow x^2-2xy+y^2-2x+2y+1+x^2-4x+4=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)-\left(2x-2y\right)+1+\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2-2\left(x-y\right)+1+\left(x-2\right)^2=0\)
\(\Leftrightarrow\left(x-y-1\right)^2+\left(x-2\right)^2=0\)(1)
Vì \(\left(x-y-1\right)^2\ge0\forall x,y\); \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-y-1\right)^2+\left(x-2\right)^2\ge0\forall x,y\)(2)
Từ (1) và (2) \(\Rightarrow\left(x-y-1\right)^2+\left(x-y\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-y-1=0\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=x-1\\x=2\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=2\end{cases}}\)
Vậy \(x=2\)và \(y=1\)
Bài 3 nhé bạn đặt cái căn đầu là a ,căn sau là b
a+b=x
ab=1
Rồi tính lần lượt a3 +b3 bằng ẩn x hết
và mũ 4 cũng vậy rồi lấy 2 số nhân nhau .Bđ là ra
Để pt có nghiệm kép suy ra delta = 0
Ta có : \(\Delta=\left(2\sqrt{3m-1}\right)^2-4\sqrt{m^2-6m+17}=0\)
\(< =>4\left(3m-1\right)-4\sqrt{m^2-6m+17}=0\)
\(< =>4\left(3m-1-\sqrt{m^2-6m+17}\right)=0\)
\(< =>3m-1-\sqrt{m^2-6m+17}=0\)
\(< =>\left(3m-1\right)^2=\sqrt{m^2-6m+17}^2\)
\(< =>\left(3m\right)^2-2.3m+1^2=m^2-6m+17\)
\(< =>9m^2-6m=m^2-6m+16\)
\(< =>9m^2-6m-\left(m^2-6m+16\right)=0\)
\(< =>9m^2-m^2-6m+6m-16=0\)
\(< =>8m^2-16=0\)\(< =>m^2-2=0\)
\(< =>\orbr{\begin{cases}m=-\sqrt{2}\\m=\sqrt{2}\end{cases}}\)
Đúng ko ạ ?
PT \(\Leftrightarrow x^3+3x^2+x-2+\left(x+1\right)-\sqrt[3]{2x+3}=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2+x-1\right)+\frac{\left(x+2\right)\left(x^2+x-1\right)}{\left(x+1\right)^2+\left(x+1\right)\sqrt[3]{2x+3}+\left(\sqrt[3]{2x+3}\right)^2}=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2+x-1\right)\left[1+\frac{1}{\left(x+1\right)^2+\left(x+1\right)\sqrt[3]{2x+3}+\left(\sqrt[3]{2x+3}\right)^2}\right]=0\)
Cái ngoặc to yên tâm là vô nghiệm từ đó...
P/s: em chi có mỗi cách này thôi, ko biết có đúng không nữa..
a)\(\sqrt{3x+1}+2x=\sqrt{x-4}-5\left(ĐKXĐ:x\ge4\right)\)
\(\Leftrightarrow\left(\sqrt{3x+1}-\sqrt{x-4}\right)+\left(2x+5\right)=0\)
\(\Leftrightarrow\frac{3x+1-x+4}{\sqrt{3x+1}+\sqrt{x-4}}+\left(2x+5\right)=0\)
\(\Leftrightarrow\frac{2x+5}{\sqrt{3x+1}+\sqrt{x-4}}+\left(2x+5\right)=0\)
\(\Leftrightarrow\left(2x+5\right)\left(\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1\right)=0\)
a') (tiếp)
\(\Leftrightarrow\orbr{\begin{cases}2x+5=0\\\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2,5\left(KTMĐKXĐ\right)\\\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\end{cases}}\)
Xét phương trình \(\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\)(1)
Với mọi \(x\ge4\), ta có:
\(\sqrt{3x+1}>0\); \(\sqrt{x-4}\ge0\)
\(\Rightarrow\sqrt{3x+1}+\sqrt{x-4}>0\Rightarrow\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}>0\)
\(\Rightarrow\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1>0\)
Do đó phương trình (1) vô nghiệm.
Vậy phương trình đã cho vô nghiệm.
Ta có: \(\sqrt{2x^2+2}=3x-1\)
\(\Leftrightarrow9x^2-6x+1-2x^2-2=0\)
\(\Leftrightarrow7x^2-6x-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(7x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-\dfrac{1}{7}\left(loại\right)\end{matrix}\right.\)