Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,12x-180+10x-20+39x-2340+65x-4420=780
126x-6960=780
126x=7740
x=430/7
a)11x-7<8x+7
<-->11x-8x<7+7
<-->3x<14
<--->x<14/3 mà x nguyên dương
---->x \(\in\){0;1;2;3;4}
b)x^2+2x+8/2-x^2-x+1>x^2-x+1/3-x+1/4
<-->6x^2+12x+48-2x^2+2x-2>4x^2-4x+4-3x-3(bo mau)
<--->6x^2+12x-2x^2+2x-4x^2+4x+3x>4-3+2-48
<--->21x>-45
--->x>-45/21=-15/7 mà x nguyên âm
----->x \(\in\){-1;-2}
Bài 1:
\(\frac{x+1}{65}+\frac{x+3}{63}=\frac{x+5}{61}+\frac{x+7}{59}\)
\(\Leftrightarrow\frac{x+1}{65}+1+\frac{x+3}{63}+1=\frac{x+5}{61}+1+\frac{x+7}{59}+1\)
\(\Leftrightarrow\frac{x+66}{65}+\frac{x+66}{63}=\frac{x+66}{61}+\frac{x+66}{59}\)
\(\Leftrightarrow\left(x+66\right)\left(\frac{1}{65}+\frac{1}{63}-\frac{1}{61}-\frac{1}{59}\right)=0\)
\(\Leftrightarrow x+66=0\)
\(\Leftrightarrow x=-66\)
b) \(\frac{m^2\left(\left(x+2\right)^2-\left(x-2\right)^2\right)}{8}-4x=\left(m-1\right)^2+3\left(2m+1\right)\)
\(\Leftrightarrow m^2x-4x=m^2+4m+4\)
\(\Leftrightarrow\left(m^2-4\right)x=m^2+4m+4\)
Để phương trình vô nghiệm thì \(\hept{\begin{cases}m^2-4=0\\m^2+4m+4\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}m=2\vee m=-2\\\left(m+2\right)^2\ne0\end{cases}}\Leftrightarrow m=2\)
a/ Đặt \(\hept{\begin{cases}\frac{x+1}{x-2}=a\\\frac{x+1}{x-4}=b\end{cases}}\) thì có
\(a^2+b-\frac{12b^2}{a^2}=0\)
\(\Leftrightarrow\left(a^2-3b\right)\left(a^2+4b\right)=0\)
b/ \(2x^2+3xy-2y^2=7\)
\(\Leftrightarrow\left(2x-y\right)\left(x+2y\right)=7\)
\(\left(8x^3-60x^2+150x-125\right)-\left(27x^3-108x^2+144x-64\right)+\left(x^3+3x^2+3x+1\right)=0\)
\(-18x^3+51x^2+9x-60=0\)
\(\left(2x-5\right)\left(x+1\right)\left(3x-4\right)=0\)
\(\left[\begin{array}{nghiempt}x=\frac{5}{2}\\x=-1\\x=\frac{4}{3}\end{array}\right.\)
Ta có ; \(\frac{x+1}{65}+\frac{x+2}{66}=\frac{x+3}{67}+\frac{x+4}{68}\)
\(\Leftrightarrow\left(\frac{x+1}{65}-1\right)+\left(\frac{x+2}{66}-1\right)=\left(\frac{x+3}{67}-1\right)+\left(\frac{x+4}{68}-1\right)\)
\(\Leftrightarrow\frac{x-64}{65}+\frac{x-64}{66}=\frac{x-64}{67}+\frac{x-64}{68}\)
\(\Leftrightarrow\left(x-64\right)\left(\frac{1}{65}+\frac{1}{66}-\frac{1}{67}-\frac{1}{68}\right)=0\)
Vì \(\left(\frac{1}{65}+\frac{1}{66}-\frac{1}{67}-\frac{1}{68}\right)\ne0\)nên \(x-64=0\Leftrightarrow x=64\)
Vậy nghiệm của phương trình ; \(S=\left\{64\right\}\)
\(\text{Ta có ; }\)\(\frac{x+1}{65}+\frac{x+2}{66}=\frac{x+3}{67}+\frac{x+4}{68}\)
\(\Leftrightarrow\left(\frac{x+1}{65}-1\right)+\left(\frac{x+2}{66}-1\right)=\)\(\left(\frac{x+3}{67}-1\right)+\left(\frac{x+4}{68}-1\right)\)
\(\Leftrightarrow\frac{x-64}{65}+\frac{x-64}{66}=\frac{x-64}{67}+\frac{x-64}{68}\)
\(\Leftrightarrow\left(x-64\right)\left(\frac{1}{65}+\frac{1}{66}-\frac{1}{67}-\frac{1}{68}\right)=0\)
\(\text{Vì}\)\(\left(\frac{1}{65}+\frac{1}{66}-\frac{1}{67}-\frac{1}{68}\right)\ne0\)\(\text{nên}\)\(x-64=0\Leftrightarrow x=64\)
\(\text{Vậy nghiệm của phương trình ; }S=\left\{64\right\}\)