K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2019

Nghiệm phương trình là x thuộc R và y=159-3x/17

23 tháng 9 2021

Vì  3x,1593x,159 đều chia hết cho 3 nên 17y chia hết cho 3.

Mà 17 là số nguyên tố nên y chia hết cho 3.

Đặt y=3t(t∈Z)y=3t(t∈Z)

Thay vào phương trình,ta có:

3x+17⋅3t=1593x+17⋅3t=159

⇒x+17t=53⇒x+17t=53

⇒x=53−17t⇒x=53−17t

Do đó:\hept{y=3tx=53−17t\hept{y=3tx=53−17t 

Vậy phương trình có vô số nghiệm nguyên được xác định bởi công thức:\hept{y=3tx=53−17t\hept{y=3tx=53−17t với t là số nguyên tùy ý.

29 tháng 4 2019

tự làm đi bài quá dễ

29 tháng 4 2019

Vì  \(3x,159\) đều chia hết cho 3 nên 17y chia hết cho 3.

Mà 17 là số nguyên tố nên y chia hết cho 3.

Đặt \(y=3t\left(t\in Z\right)\)

Thay vào phương trình,ta có:

\(3x+17\cdot3t=159\)

\(\Rightarrow x+17t=53\)

\(\Rightarrow x=53-17t\)

Do đó:\(\hept{\begin{cases}y=3t\\x=53-17t\end{cases}}\) 

Vậy phương trình có vô số nghiệm nguyên được xác định bởi công thức:\(\hept{\begin{cases}y=3t\\x=53-17t\end{cases}}\) với t là số nguyên tùy ý.

5 tháng 5 2019

Dễ thấy 555 và 3x đều chia hết cho 3 nên 2y chia hết cho 3.Mà (555;2) = 1 nên y chia hết cho 3.

Đặt y = 3k (\(k\inℕ^∗\)) suy ra \(3x+6k=555\Leftrightarrow x+2k=185\Rightarrow x=185-2k\)

Do x nguyên dương nên \(185-2k\ge1\Leftrightarrow2k\le184\Leftrightarrow k\le92\)

Kết hợp \(k\inℕ^∗\) suy ra \(1\le k\le92\)

Từ đây suy ra \(\hept{\begin{cases}x=185-2k\\y=3k\end{cases}}\left(1\le k\le92;k\inℕ^∗\right)\)

NM
26 tháng 1 2021

ta có phương trình tương đương 

\(3mx-m-3x=2\Leftrightarrow3\left(m-1\right)x=m+2\)

phương trình có nghiệm duy nhất khi và chỉ khi \(m-1\ne0\Leftrightarrow m\ne1\)

khi đó PT có nghiệm \(x=\frac{m+2}{3\left(m-1\right)}>0\Rightarrow m\in\left(-\infty;-2\right)\cup\left(1;+\infty\right)\)

5 tháng 4 2020

mình sẽ tạm hiểu * là ^

(3x + 1)^2 - x^2 + 8x - 16 = 0

<=> 9x^2 + 6x + 1 - x^2 + 8x - 16 = 0

<=> 8x^2 + 14x - 15 = 0

<=> 8x^2 + 20x - 6x - 15 = 0

<=> 4x(2x + 5) - 3(2x + 5) = 0

<=> (4x - 3)(2x + 5) = 0

<=> 4x - 3 = 0 hoặc 2x + 5 = 0

<=> 4x = 3 hoặc 2x = -5

<=> x = 3/4 hoặc x = -5/2