Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét đa thức: Q(x)=2x2-2x+10
Có: 2x2 >= 0
2x < 2x2
=> 2x2- 2x >= 0
Mà 10 >0
=> 2x2-2x+10 >= 10
Vậy đa thức Q(x) vô nghiệm.
Cho x2-2x+10=0
=>x2-2.x.1+12+9=0
=>(x-1)2+9=0 (vô lí vì VT>VP)
=> Q(x) vô nghiệm
1/ a/ Ta có:
\(P\left(2\right)=m.2^2+\left(2m+1\right).2-10=16\)
\(\Leftrightarrow m-3=0\)
\(\Leftrightarrow m=3\)
b/ Theo câu a thì
\(P\left(x\right)=3x^2+7x-10=0\)
\(\Leftrightarrow\left(3x^2-3x\right)+\left(10x-10\right)=0\)
\(\Leftrightarrow3x\left(x-1\right)+10\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x+10\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{10}{3}\end{cases}}\)
2/ Tương tự a phân tích nhân tử hộ thôi nha
a/ \(1-5x=0\)
b/ \(x^2\left(x+2\right)=0\)
c/ \(\left(x-1\right)\left(2x-3\right)=0\)
d/ \(\left(x-2\right)^2+4x^{2018}\ge0\) vì dấu = không xảy ra nên đa thức vô nghiệm
CM đa thức k có nghiệm:
a) x^2 + +5x + 8
Vì x^2 + +5x >hc = 0 với mọi x
=> x^2 + +5x + 8 > 0 với mọi x
Vậy đa thức x^2 + +5x + 8 k có nghiệm
các câu sau bn lm tương tự vậy nha
2x2-2x+10=0
=> 2 ( x2-x+5 ) = 0
=> x2-x+5 = 0
=> x(x-1) = -5
=> x-1 = -5/x
=> x = -5/x + 1
Q(x)=2(x2-x+5)=0
=>x2-x+5=0
=>x2-2.x.1/2+(1/2)2+19/4=0
=> (x+1/2)2+19/4 =0 (vô lí vì VT>VP với mọi x)
=> Q(x) vô nghiệm
Nghiệm của đa thức A là: \(\sqrt{9}\)
Nghiệm của đa thức B là : x=4 hoặc x=3
Nghiệm của đa thức C là : x=1/2 oặc x=3
Nghiệm của đa thức D là : x=9
Nghiệm của đa thức E là : x= -14
Nghiệm của đa thức F là : x(x+7)=8 ->x=1;-1;8;-8;...
Nghiệm của đa thức J là : x(5x+9) = -4 -> x=1;-1;4;-4;...
Nghiệm của đa thức Q là : x(x-5)=-6 ->...
\(x^2-3x-4=0\)
\(< =>x^2+x-4x-4=0\)
\(< =>x\left(x+1\right)-4\left(x+1\right)=0\)
\(< =>\left(x-4\right)\left(x+1\right)=0\)
\(< =>\orbr{\begin{cases}x=4\\x=-1\end{cases}}\)
\(2x^3-x^2-2x+1=0\)
\(< =>x^2\left(2x-1\right)-\left(2x-1\right)=0\)
\(< =>\left(x^2-1\right)\left(2x-1\right)=0\)
\(< =>\left(x-1\right)\left(x+1\right)\left(2x+1\right)=0\)
\(< =>\hept{\begin{cases}x=1\\x=-1\\x=-\frac{1}{2}\end{cases}}\)
\(Tacó:f\left(x\right)+g\left(x\right)=x^5-x^3+x^2-2x+5+x^2-3x+1+x^2-x^4+x^5\)
Ta có : j(x) + g(x) = (x5 - x3 - x2 - 2x +5 )+( x2 - 3x + 1 + x2 - x4 + x5)
= x5 - x3 - x2 - 2x +5+x2 - 3x + 1 + x2 - x4 + x5
=(x5 + x5) + (-3x - 3x) + (-2x+2x-2x)+ (5 +1) -4x
= 10x - 6x - 2x +6 - 4x
= -2x +6
Vậy j(x) + g(x) = -2x +6
Nếu lớp 7 thì chắc đề sai ; Còn nếu đề đùng thì giải sau :
Để \(J\left(x\right)\) có nghiệm <=> \(-2x^2+2x+10\)
\(\Leftrightarrow-2x^2+2x-\frac{1}{2}+\frac{1}{2}+10=0\)
\(\Leftrightarrow-2\left(x^2-x+\frac{1}{4}\right)+\frac{21}{2}=0\)
\(\Leftrightarrow-2\left(x-\frac{1}{2}\right)^2=-\frac{21}{2}\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2=\frac{21}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{1}{2}=\frac{\sqrt{21}}{2}\\x-\frac{1}{2}=\frac{-\sqrt{21}}{2}\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{\sqrt{21}+1}{2}\\x=\frac{-\sqrt{21}+1}{2}\end{cases}}}\)
Vậy \(x\in\left\{\frac{-\sqrt{21}+1}{2};\frac{\sqrt{21}+1}{2}\right\}\) là nghiệm của J(x)