
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


HIHI, bài này thì bó tay lẫn cả chân
Vì mới học xong lớp 6 hoi.
Học tốt nha, nếu ko ai giải thì thử vào câu hỏi tương tự thử
Nha, học tốt !
#)Giải:
-Không sao mình biết cách làm mà, mình chỉ thử lòng ae thui !

a. \(8x\left(x-2017\right)-2x+4034=0\)
\(8x\left(x-2017\right)-2\left(x-2017\right)=0\)
\(\left(8x-2\right)\left(x-2017\right)=0\)
\(\Rightarrow TH1:8x-2=0\)
\(8x=2\)
\(x=\frac{1}{4}\)
\(TH2:x-2017=0\)
\(x=2017\)
Vậy \(x\in\left\{\frac{1}{4};2017\right\}\)
Bài 1
a) \(8x\left(x-2017\right)-2x+4034=0\)
\(\Rightarrow8x\left(x-2017\right)-2\left(x-2017\right)=0\)
\(\Rightarrow\left(x-2017\right)\left(4x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=2017\\x=\frac{1}{4}\end{cases}}\)

a) Phân thức xác định được \(\Leftrightarrow\hept{\begin{cases}2x+10\ne0\\x\ne0\\2x\left(x+5\right)\ne0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\ne0\\x+5\ne0\end{cases}}\)
Vậy...
b) \(P=\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\)
=> \(P=\frac{x\left(x^2+2x\right)+2\left(x-5\right)\left(x+5\right)+50-5x}{2x\left(x+5\right)}\)
=> \(P=\frac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}\)
=> \(P=\frac{x^3+4x^2-5x}{2x\left(x+5\right)}=\frac{x\left(x-1\right)\left(x+5\right)}{2x\left(x+5\right)}=\frac{\left(x-1\right)}{2}\)
\(P=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)

\(Gọi \) \(f ( x ) = x^4 + ax + b\)
\(g( x ) = x^2 - 4\)
\(Cho \) \(g ( x ) = 0\)
\(\Leftrightarrow\)\(x^2 - 4 = 0\)
\(\Leftrightarrow\)\(( x - 2 )( x + 2 )=0\)
\(\Rightarrow\)\(x = 2 \) \(hoặc\) \(x = - 2\)
\(Ta \) \(có : \)
\(f ( 2 ) = 2^4 + a . 2 + b\)
\(\Rightarrow\)\(f ( 2 ) = 16 + 2a + b\) \(( 1 )\)
\(f ( - 2 ) = ( - 2 )^4 + a . ( - 2 ) + b\)
\(\Rightarrow\)\(f ( - 2 ) = 16 - 2a + b \) \(( 2 )\)
\(Lấy \) \(( 1 ) + ( 2 )\) \(ta \) \(được : \)\(32 + 2b = 0\)
\(\Rightarrow\)\(2b = - 32\)
\(\Rightarrow\)\(b = - 16\)
\(Thay \) \(b = - 16 \) \(vào \) \(( 1 ) \) \(ta \) \(được :\)
\(16 + 2a -16 = 0\)
\(\Rightarrow\)\(2a = 0\)
\(\Rightarrow\)\(a = 0\)
\(Vậy : a = 0 \) \(và\) \(b = - 16 \) \(thì \) \(x^4 + ax + b \)
\(⋮\)\(x ^2 -4\)
Đa thức \(x^2-4\)có nghiệm\(\Leftrightarrow x^2-4=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x+2=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=2\end{cases}}\)
Để \(x^4+ax+b⋮x^2-4\)thì
\(f\left(2\right)=f\left(-2\right)=0\)(theo Bezout)
Ta có: \(f\left(2\right)=2^4+2a+b=0\Leftrightarrow2a+b=-16\)(1)
\(f\left(-2\right)=\left(-2\right)^4-2a+b=0\Leftrightarrow-2a+b=-16\)(2)
Lấy (1) + (2), ta được: 2b =- 32\(\Rightarrow b=-16\)
Lúc đó \(a=\frac{-16+16}{2}=0\)
Vậy a = 0; b = -16

3/
a/ \(A=\left(x-y\right)^2+\left(x+y\right)^2.\)
\(A=\left(x^2-2xy+y^2\right)+\left(x^2+2xy+y^2\right)\)
\(A=x^2-2xy+y^2+x^2+2xy+y^2\)
\(A=2x^2+2y^2\)
b/ \(B=\left(2a+b\right)^2-\left(2a-b\right)^2\)
\(B=\left(4a^2+4ab+b^2\right)-\left(4a^2-4ab+b^2\right)\)
\(B=4a^2+4ab+b^2-4a^2+4ab-b^2\)
\(B=8ab\)
c/ \(C=\left(x+y\right)^2-\left(x-y\right)^2\)
\(C=\left(x^2+2xy+y^2\right)-\left(x^2-2xy+y^2\right)\)
\(C=x^2+2xy+y^2-x^2+2xy-y^2\)
\(C=4xy\)
d/ \(D=\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)
\(D=\left(4x^2-4x+1\right)-2\left(4x^2-12x+9\right)+4\)
\(D=4x^2-4x+1-8x^2+24x-18+4\)
\(D=-4x^2+20x-13\)

Bài 7
\(a,A=x^2-2x+5\)
\(=\left(x^2-2x+1\right)+4\)
\(=\left(x-1\right)^2+4\ge4\forall x\)
GTNN \(A=4\) khi \(\left(x-1\right)^2=0\Rightarrow x=1\)
\(b,B=x^2-x+1\)
\(=\left(x^2-2\cdot\frac{1}{2}x+\frac{1}{4}\right)+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
\(c,C=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
Đặt \(x^2+5x=t\)
\(\Rightarrow C=\left(t-6\right)\left(t+6\right)\)
\(=t^2-36\)
\(\left(x^2+5x\right)^2-36\ge36\forall x\)
\(d,D=x^2+5y^2-2xy+4y-3\)
\(=\left(x^2-2xy+y^2\right)+\left(4y^2+4y+1\right)-4\)
\(=\left(x-y\right)^2+\left(2y+1\right)^2-4\ge-4\)
Bạn xem lại đề nhé
a là hằng số nhé