Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C(x) = 0 hoặc 1x^3 +2 = 0
x^3 = -2
x= - căn bậc ba của 2 ( ko bik viết kiểu gì)
Có: \(h\left(x\right)=3x^2+x=0\)
\(\Leftrightarrow x\left(3x+1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\3x+1=0\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=-\frac{1}{3}\end{array}\right.\)
ta có: h(x)=3x2+x=x(3x+1)=0
<=> \(\left[\begin{array}{nghiempt}x=0\\x=-\frac{1}{3}\end{array}\right.\)
M(x) có nghiệm<=>M(x)=0
<=>x2+4x=0
<=>x(x+4)=0
<=>x=0 hoặc x+4=0
<=>x=0 hoặc x=-4
Vậy x=0;x=-4 là nghiệm của đa thức M(x)
x2+4x=0
tương đương x(x+4)=0
TH1 x=0
TH2 x+4=0 suy ra x= -4
Vậy phương trình có nghiệm là x=0 ;x= -4
3x^4 + 12 = 0
3(x^4 + 4) = 0
x^4 + 4 = 0
x^4 = -4
mà \(x^4\ge0\) với mọi x
Vậy đa thức trên vô nghiệm.
\(H\left(x\right)=3x^2+3x-1\)
Ta cho H(x) =0
\(\Rightarrow H\left(x\right)=3x^2+3x=1\)
\(\Rightarrow x\left(3x+3\right)=1\)
\(\Rightarrow\hept{\begin{cases}x=1\\3x+3=1\end{cases}\Rightarrow x=1}\)
Vậy nghiệm của đa thức H(x) =1
\(H\left(z\right)=0\Leftrightarrow z^2+z-\frac{1}{3}=0\\ \Leftrightarrow\left(z+\frac{1}{2}\right)^2=\frac{7}{12}\\ \Leftrightarrow\orbr{\begin{cases}z+\frac{1}{2}=\frac{2\sqrt{21}}{12}\\z+\frac{1}{2}=-\frac{2\sqrt{12}}{12}\end{cases}}\)
Ta có :\(3x^2+1x\)
\(\Rightarrow x\left(3x+1\right)=0\)(Áp dụng tính chất phân phối của phép tính)
\(\Rightarrow\orbr{\begin{cases}x=0\\3x+1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\3x=-1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{-1}{3}\end{cases}}\)
Vậy nghiệm của đa thức trên là \(0\)và \(\frac{-1}{3}\).
Chúc bạn học tốt !!!
Ta có : \(H\left(x\right)=0\Leftrightarrow3x^2+x=0\)
\(\Leftrightarrow\left(3x+1\right)x=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x+1=0\\x=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x=-1\\x=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{3}\\x=0\end{cases}}\)
Vậy nghiệm của đa thức H(x) là x = \(\frac{-1}{3}\); x = 0