\(2(2-x) +\)\({1 \over 2}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2019

2(2-x)+ 1/2 (x-2)^2

15 tháng 4 2019

Đặt \(f\left(x\right)=2.\left(2-x\right)+\left(x-2\right)^2\)

Ta có: \(f\left(x\right)=0\Leftrightarrow2.\left(2-x\right)+\left(x-2\right)^2=0\)

                               \(\Leftrightarrow\hept{\begin{cases}2.\left(2-x\right)=0\\\left(x-2\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\x=2\end{cases}}\)

Vậy x=2 là nghiệm của đa thức trên 

15 tháng 4 2019

\(2\left(2-x\right)\cdot2\cdot\left(2-x\right)\cdot1212\cdot\left(x-2\right)\cdot2\cdot\left(x-2\right)\cdot2=0\)

\(4\left(2-x\right)^2\cdot4848\left(x-2\right)^2=0\)

\(19392\left(2-x\right)^2\left(x-2\right)^2=0\)

\(\left(2-x\right)^2\left(x-2\right)^2=0\)

\(TH1:\left(2-x\right)^2=0\Rightarrow2-x=0\Rightarrow x=2\)

\(TH2:\left(x-2\right)^2=0\Rightarrow x-2=0\Rightarrow x=2\)

Vậy x = 2

15 tháng 4 2019

<br class="Apple-interchange-newline"><div id="inner-editor"></div>2(2−x)·2·(2−x)·1212·(x−2)·2·(x−2)·2=0

4(2−x)2·4848(x−2)2=0

19392(2−x)2(x−2)2=0

(2−x)2(x−2)2=0

TH1:(2−x)2=0⇒2−x=0⇒x=2

TH2:(x−2)2=0⇒x−2=0⇒x=2

 x = 2

31 tháng 5 2019

a) \(L=\left(x-1\right)^2+\left(x+5\right)^2\)

Ta có: \(\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left(x+5\right)^2\ge0\end{cases}}\)

\(\Rightarrow L=0\Leftrightarrow\)\(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(x+5\right)^2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=1\\x=-5\end{cases}}\left(L\right)\)

Vậy đa thức L vô nghiệm

31 tháng 5 2019

d) \(M=x^2-5x-6\)

\(\Leftrightarrow M=x^2-6x+x-6\)

\(\Leftrightarrow M=x\left(x-6\right)+\left(x-6\right)\)

\(\Leftrightarrow M=\left(x+1\right)\left(x-6\right)\)

M = 0 \(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=6\end{cases}}\)

Vậy đa thức M có hai nghiệm là -1 hoặc 6

7 tháng 5 2017

a)Ta có: \(x^2 - 2 = 0 \)

\(=> x^2 = 2\)

\(\Rightarrow x=\pm\sqrt{2}\)

7 tháng 5 2017

b)Ta có : \(x^2\ge0\) \(\forall x\in R\)

\(\Rightarrow x^2+\sqrt{3}\ge\sqrt{3}\ne0\)

Vậy đa thức trên vô nghiệm

7 tháng 1 2020

\(f\left(x\right)=4x^2+3x+1\)

\(g\left(x\right)=3x^2-2x+1.\)

a) \(h\left(x\right)=f\left(x\right)-g\left(x\right)\)

\(\Rightarrow h\left(x\right)=\left(4x^2+3x+1\right)-\left(3x^2-2x+1\right)\)

\(\Rightarrow h\left(x\right)=4x^2+3x+1-3x^2+2x-1\)

\(\Rightarrow h\left(x\right)=\left(4x^2-3x^2\right)+\left(3x+2x\right)+\left(1-1\right)\)

\(\Rightarrow h\left(x\right)=x^2+5x.\)

b) Ta có \(h\left(x\right)=x^2+5x.\)

Đặt \(x^2+5x=0\)

\(\Rightarrow x.\left(x+5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=0-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

Vậy \(x=0\)\(x=-5\) là các nghiệm của đa thức \(h\left(x\right).\)

Chúc bạn học tốt!

8 tháng 1 2020

mơn nhéok

16 tháng 10 2019

đề bài bị lỗi :(