Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x2+5x=0
=>x(x+5)=0
=> x=0 hoặc x+5=0
=>x=0 hoặc x=-5
b) 3x2-4x=0
=>x(3x-4)=0
=>x=0 hoặc 3x-4=0
=.x=0 hoặc x=4/3
c)5x5+10x=0
=>x(5x4+10)=0
=> Ta có 5x4+10>0 nên x=0
d)x3+27=0
=> x3=-27
=>x=-3
a/ \(x^2+5x=0\)
\(\Leftrightarrow x\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}}\)
Các câu sau bạn cứ giải tương tự
a)Vì T(x)=P(x)+Q(x)
=>T(x)=(-2x2-5x+1)+(-2x2+x-5)
=>T(x)=-2x2-5x+1-2x2+x-5
=>T(x)=(-2x2-2x2)+(-5x+x)+(1-5)=-4x2-4x-4
b)Xét T(x)=-4x2-4x-4=0
=>-(4x2+4x+4)=0
=>4x2+4x+4=0
=>4x2+2x+2x+1+3=0
=>2x(2x+1)+(2x+1)+3=0
=>(2x+1)(2x+1)+3=0
=>(2x+1)2+3=0
Vì (2x+1)2 > 0 với mọi x
=>(2x+1)2+3 > 3 > 0 với mọi x
=>T(x) vô nghiệm
\(P=x\left(5-2x\right)\)
\(x=0,,,,,,x=\frac{-5}{-2}\)
b/ \(\left(x^2-\frac{2.7x}{2}+\frac{49}{4}\right)+10-\frac{49}{4}=\left(x-\frac{7}{2}\right)^2-\frac{9}{4}=\left(x-\frac{7}{2}+\frac{3}{2}\right)\left(x-\frac{7}{2}-\frac{3}{2}\right)\)
\(x=2..........x=5\)
p/s tích phát
a,Ta ó: \(5x-2x^2=0\Leftrightarrow x\left(5-2x\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\5-2x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{5}{2}\end{cases}}}\)
Vậy...
b,Ta ó: \(Q\left(x\right)=x^2-7x+10=x^2-2x-5x+10=x\left(x-2\right)-5\left(x-2\right)=\left(x-5\right)\left(x-2\right)\)
\(Q\left(x\right)=0\Leftrightarrow\left(x-1\right)\left(x+5\right)=0\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-5\end{cases}}}\)
Vậy...
Bài 1:
a/ \(P\left(x\right)=\frac{1}{2}\left(4x^2+4x+1\right)+\frac{3}{4}=\frac{1}{2}\left(2x+1\right)^2+\frac{3}{4}\)
Do \(\frac{1}{2}\left(2x+1\right)^2\ge0\) \(\forall x\Rightarrow P\left(x\right)=\frac{1}{2}\left(2x+1\right)^2+\frac{3}{4}>0\) \(\forall x\)
\(\Rightarrow\) Đa thức ko có nghiệm
b/ \(72^{63}=\left(8.9\right)^{63}=\left(2^3.3^2\right)^{63}=2^{189}.3^{126}\)
\(A=24^{54}.54^{24}.2^{10}=\left(8.3\right)^{54}.\left(27.2\right)^{24}.2^{10}=\left(2^3.3\right)^{54}.\left(3^3.2\right)^{24}.2^{10}=2^{196}.3^{126}\)
\(\Rightarrow A=2^7.2^{189}.3^{126}=2^7.72^{63}⋮72^{63}\)
Bài 2:
\(5x^2+10x=0\Leftrightarrow5x\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}5x=0\\x+2=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
\(5^{\left(x-2\right)\left(x+3\right)}=1\Leftrightarrow5^{\left(x-2\right)\left(x+3\right)}=5^0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
a)
\(x^2-5x+4=x^2+x-4x+4=x\left(x+1\right)-4\left(x+1\right)=\left(x+1\right)\left(x-4\right)\)
Để đa thức có nghiệm thì \(\left(x+1\right)\left(x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+1=0\\x-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=4\end{cases}}\)
b)
\(x+2x^2=x\left(1+2x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\1+2x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-\frac{1}{2}\end{cases}}\)
c)
\(x\left(x-1\right)-x\left(x+3\right)+4\)
\(=x\left(x-1-x-3\right)+4\)
\(=-4x+4\)
Đa thức có nghiệm khi:\(-4\left(x+1\right)=0\)
\(\Leftrightarrow x=-1\)
a, h(x)=-4x+8
b, Tìm nghiệm của h(x) thì
h(x)=-4x+8=0\(\Rightarrow\)-4x=-8\(\Rightarrow\)x=2
H(x) = ( 3x^3 - x^3 - x^3 ) + ( 5x^2 - 5x^2 ) + ( - 5x + x ) + 8
= -4x + 8
N : -4x + 8 = 0
-4x = -8
x= 2
a) Cho \(2x^2+x=0\)
x(2x+1)=0
=>x=0 hoặc 2x+1=0
*2x+1=0 => x=-1/2
Vậy nghiệm ....
b) Cho \(5x^2-10x=0\)
x(5x-10)=0
=> x=0 hoặc 5x-10=0
*) 5x-10=0 =>x=2
vậy nghiệm ....