Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=2\left(x-1,5\right)-5=0\)
\(2x-3-5=0\Leftrightarrow2x-8=0\Leftrightarrow2x=8\Leftrightarrow x=4\)
b, \(B=-3x+8+6x-9=0\)
\(3x-1=0\Leftrightarrow3x=1\Leftrightarrow x=\frac{1}{3}\)
c, \(C=6x-18x^3=0\)
\(6x\left(1-3x^2\right)=0\Leftrightarrow\orbr{\begin{cases}6x=0\\1-3x^2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\3x^2=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x^2=\frac{1}{3}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=\pm\frac{1}{\sqrt{3}}\end{cases}}}\)
2x^2-6x+2=0
2(×^2-3×+1)=0
×^2-3×+1=0
(×^2-3×+9/4)-5/4=0
(×-3/2)^2=5/4
×-3/2=+-căn 5/2
×=3+-căn5+3/2
Đặt \(2x^2-6x+3=0\)
\(\Delta=\left(-6\right)^2-4.3.2=36-24=12>0\)
\(x_1=\frac{6-\sqrt{12}}{2};x_2=\frac{6+\sqrt{12}}{2}\)
\(4x^2+6x-1=0\)
\(\Leftrightarrow4x^2+2.3.x-3^2+8=0\)
\(\Leftrightarrow\left(2x-3\right)^2+8=0\)
Ta thấy:\(\left(2x-3\right)^2+8\)
Mà: \(\left(2x-3\right)^2\ge0\)
Nên: \(\left(2x-3\right)^2+8\ge8\)
Khi đó: \(\left(2x-3\right)^2+8=0\)(vô lí)
Vậy đa thức trên vô nghiệm
#hoktot<3#
Làm cái này đi, ko thể hiện nhá >: tại I chưa bt phân tích kiểu chii như vại :333
\(4x^2+6x-1=0\)
\(\Delta=6^2-4.4.\left(-1\right)=36+16=52>0\)
Nên phương trình có 2 nghiệm phân biệt
\(x_1=\frac{-6-\sqrt{52}}{8};x_2=\frac{-6+\sqrt{52}}{8}\)
Ta có P(x)=0
=> \(2x^3-6x=0\)
=> 2x(x-3)=0
=> x=0 hoặc x-3=0
+) x=0
+) x-3=0
x=3
Vậy x=0 hoặc x=3 là nghiệm của đa thức P(x)
Ta có:
\(x^2-6x=0\)
\(\Leftrightarrow x.\left(x-6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=6\end{cases}}}\)
Vậy...
6x2 - 3 - 9 = 0
6x2 = 0 - (-3 - 9)
6x2 = 12
x2 = 12 : 6
x2 = 2
\(\Rightarrow\orbr{\begin{cases}x=\sqrt{2}\\x=-\sqrt{2}\end{cases}}\)
Đề sai rùi
đề 1: 6x^2-3-9=0 <=> 6x^2=12 <=> x^2=2 <=> \(x=\pm\sqrt{2}\)
Đề 2: 6x^2-3x-9=0 <=> 2x^2 -x-3=0 <=> (2x^2-3x)+(2x-3) =0 <=> (x+1)(2x-3)=0 <=> x=-1 hoặc x=3/2