Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x3-x2+x-1=0
=>(x3-x2)+(x-1)=0
=>x2(x-1)+(x-1)=0
(x-1)(x2+1)=0
Ta có \(x^2+1>0\) ( vì \(x^2\ge0\) )
=>x-1=0
x=1
Vậy x=1 là nghiệm của f(x)
b)11x3+5x2+4x+10=0
=>(10x3+10)+(x3+x2)+(4x2+4x)=0
=>10(x3+1)+x2(x+1)+4x(x+1)=0
10(x+1)(x2-x+1)+x2(x+1)+4x(x+1)=0
(x+1)[10(x2-x+1)+x2+4x]=0
(x+1)(11x2-6x+10)=0
(x+1)[(9x2-2.3x+1)+9]=0
(x+1)[(3x-1)2+2x2+9]=0
=>x+1=0
x=-1
Vậy -1 là nghiệm của y(x)
c)-17x3+8x2-3x+12=0
dsahsfgfthsgdgfbbbbshsgfhdgjmafhtgyaemtjfbheyhfmyngehmrjbfgywagejmfhrbhhjgf
Trả lời:
\(g\left(x\right)=2x^3-11x^2-23x+14=0\)
\(\Leftrightarrow2x^3-14x^2+3x^2-21x-2x+14=0\)
\(\Leftrightarrow2x^2.\left(x-7\right)+3x.\left(x-7\right)-2.\left(x-7\right)=0\)
\(\Leftrightarrow\left(x-7\right).\left(2x^2+3x-2\right)=0\)
\(\Leftrightarrow\left(x-7\right).\left(2x^2-x+4x-2\right)=0\)
\(\Leftrightarrow\left(x-7\right).\left[x.\left(2x-1\right)+2.\left(2x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-7\right).\left(2x-1\right).\left(x+2\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x-7=0\\2x-1=0\\x+2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=7\\x=\frac{1}{2}\\x=-2\end{cases}}\)
Vậy đa thức có 3 nghiêm \(x=\left\{7,\frac{1}{2},-2\right\}\)
\(A\left(x\right)=2x^2-11x+5\)
\(A\left(x\right)=2x^2-x-10x+5\)
\(A\left(x\right)=x\left(2x-1\right)-5\left(2x-1\right)\)
\(A\left(x\right)=\left(2x-1\right)\left(x-5\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\x-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=5\end{matrix}\right.\)
a) Ta có: \(x^3-x^2+x-1=0\)
\(\Rightarrow x^2\left(x-1\right)+\left(x-1\right)=0\)
\(\Rightarrow\left(x^2+1\right)\left(x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2+1=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x^2=-1\left(loại\right)\\x=1\end{matrix}\right.\)
Vậy x = 1 là nghiệm của đa thức f(x)
b, c: @Ace Legona
a)\(f\left(x\right)=x^3-x^2+x-1\)
Cho \(f\left(x\right)=0\Rightarrow x^3-x^2+x-1=0\)
\(\Rightarrow x^2\left(x-1\right)+\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(x^2+1\right)=0\)
Dễ thấy: \(x^2+1\ge1>0\forall x\) ( vô nghiệm )
\(\Rightarrow x-1=0\Rightarrow x=1\)
b)\(g\left(x\right)=11x^3+5x^2+4x+10\)
Cho \(g\left(x\right)=0\Rightarrow11x^3+5x^2+4x+10=0\)
\(\Rightarrow11x^3-6x^2+10x+11x^2-6x+10=0\)
\(\Rightarrow x\left(11x^2-6x+10\right)+\left(11x^2-6x+10\right)=0\)
\(\Rightarrow\left(x+1\right)\left(11x^2-6x+10\right)=0\)
Dễ thấy:
\(11x^2-6x+10=11\left(x-\dfrac{3}{11}\right)^2+\dfrac{101}{11}\ge\dfrac{101}{11}>0\forall x\) (vô nghiệm)
\(\Rightarrow x+1=0\Rightarrow x=-1\)
c)\(h\left(x\right)=-17x^3+8x^2-3x+12\)
Cho \(h\left(x\right)=0\Rightarrow-17x^3+8x^2-3x+12=0\)
\(\Rightarrow17x^2+9x+12-17x^3-9x^2-12x=0\)
\(\Rightarrow\left(17x^2+9x+12\right)-x\left(17x^2+9x+12\right)=0\)
\(\Rightarrow\left(1-x\right)\left(17x^2+9x+12\right)=0\)
Dễ thấy:
\(17x^2+9x+12=17\left(x+\dfrac{9}{34}\right)^2+\dfrac{735}{68}\ge\dfrac{735}{68}>0\forall x\)(vô nghiệm)
\(\Rightarrow1-x=0\Rightarrow x=1\)
\(F\left(x\right)=5x^2+12x+4\)
\(F\left(x\right)=5x^2+10x+2x+4\)
\(F\left(x\right)=5x.\left(x+2\right)+2.\left(x+2\right)\)
\(F\left(x\right)=\left(5x+2\right).\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}5x+2=0\\x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-\frac{2}{5}\\x=-2\end{cases}}}\)
Vậy...
nghiệm của đa thức \(f\left(x\right)=5x^2+12x+4\) là giá trị x thỏa mãn \(f\left(x\right)=0\)
Ta có:\(f\left(x\right)=5x^2+12x+4=0\)
\(\Leftrightarrow5x^2+10x+2x+4=0\)
\(\Leftrightarrow5x\left(x+2\right)+2\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(5x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\5x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-\frac{2}{5}\end{cases}}\)