Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(b)\) Ta có :
\(7x^2-8x-15=0\)
\(\Leftrightarrow\)\(\left(7x^2+7x\right)-\left(15x+15\right)=0\)
\(\Leftrightarrow\)\(7x\left(x+1\right)-15\left(x+1\right)=0\)
\(\Leftrightarrow\)\(\left(7x-15\right)\left(x+1\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}7x-15=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}7x=15\\x=-1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{15}{7}\\x=-1\end{cases}}}\)
Vậy nghiệm của đa thức \(g\left(x\right)=7x^2-8x-15\) là \(x=\frac{15}{7}\) hoặc \(x=-1\)
Chúc bạn học tốt ~
\(a)\) Ta có :
\(2x^2-5x+3=0\)
\(\Leftrightarrow\)\(\left(2x^2-2x\right)+\left(-3x+3\right)=0\)
\(\Leftrightarrow\)\(2x\left(x-1\right)+\left(-3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\)\(\left(2x-3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}2x-3=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=3\\x=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{3}{2}\\x=1\end{cases}}}\)
Vậy nghiệm của đa thức \(f\left(x\right)=2x^2-5x+3\) là \(x=\frac{3}{2}\) hoặc \(x=1\)
Chúc bạn học tốt ~
1. Thay x = -2 vào \(f\left(x\right)\), ta có:
\(\left(-2\right)^3+2.\left(-2\right)^2+a.\left(-2\right)+1=\)0
=> -8 + 8 - 2a + 1 = 0
=> -2a +1 = 0
=> -2a = -1
=> a = \(\frac{1}{2}\)
Vậy a = \(\frac{1}{2}\)
2. * Thay x = 1 vào \(f\left(x\right)\), ta có:
12 + 1.a + b = 1 + a + b = 0 ( 1)
* Thay x = 2 vào biểu thức \(f\left(x\right)\), ta có:
22 + 2.a + b = 4 + 2a + b = 0 ( 2)
* Lấy (2 ) - ( 1) , ta có:
( 4 + 2a + b ) - ( 1 + a + b ) = 3 + a
=> 3 + a = 0
=> a = -3
* 1 + a + b = 0
=> 1 - 3 + b = 0
=> b = -1 + 3 = -2
Vậy a= -3 và b= -2
a) \(2x^2-3x=0\)
\(\Leftrightarrow x\left(2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3}{2}\end{matrix}\right.\)
b) \(x^3-2x=0\)
\(\Leftrightarrow x\left(x^2-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{2}\end{matrix}\right.\)
c) \(x^6+1=0\)
\(\Leftrightarrow x^6=-1\)
Ta có : \(x^6\ge0\) với mọi x
Mà : -1 < 0
=> Vô nghiệm
d) \(x^3+2x=0\)
\(\Leftrightarrow x\left(x^2+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=-2\left(loại\right)\end{matrix}\right.\)
e) \(x^5+8x^2=0\)
\(\Leftrightarrow x^2\left(x^3+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=0\\x^3+8=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^3=-8\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
f) \(x^2\left(x^2-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=0\\x^2-9=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\pm3\end{matrix}\right.\)
g) \(\left(x+\dfrac{1}{2}\right)\left(x^2-\dfrac{4}{5}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=0\\x^2-\dfrac{4}{5}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x^2=\dfrac{4}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x=\sqrt{\dfrac{4}{5}}\end{matrix}\right.\)
a) f(x) = 5x2+2x-x2+8-4x2
= (5x2-x2-4x2)+2x+8
= 2x+8
b) f(x)=2x+8
Để đa thức f(x) có nghiệm thì f(x) = 0
hay 2x+8=0
2x = -8
x = -4
Vậy x = -4 là nghiệm của đa thức f(x)
tick mk nk!
a ) Xét : \(5-2x=0\)
\(\Rightarrow2x=5-0\)
\(\Rightarrow2x=5\)
\(\Rightarrow x=\frac{5}{2}\)
Vậy \(x=\frac{5}{2}\)là nghiệm của đa thức f( x ) = 5 - 2x
b ) Thay x = 2 vào \(\frac{2x-5}{x-2}+\frac{x-1}{x-2}\), ta được :
\(\frac{2.2-5}{2-2}+\frac{2-1}{2-2}\)
\(=\frac{4-5}{0}+\frac{1}{0}\)
\(\Rightarrow\)Vô lý ( vì Mẫu số luôn luôn khác 0 )
Vậy x = 2 không phải là nghiệm của \(\frac{2x-5}{x-2}+\frac{x-1}{x-2}\)
Chúc bạn học tốt !!!
a) Cho f(x) =0
=> 5 -2x =0
2x =5
x =5/2
KL: x= 5/2 là nghiệm của đa thức f(x)
b) Cho x =2
\(\Rightarrow\frac{2.2-5}{2-2}+\frac{2-1}{2-2}=\frac{2.2-5}{0}+\frac{2-1}{0}\)( vì không có phân số nào có mẫu số bằng 0 )
=> x =2 không phải nghiệm của biểu thức
p/s nha
a) f(x) = -x5 - 7x4 - 2x3 + x2 + 4x + 8
g(x) = x5 + 7x4 + 2x3 + 3x2 - 5x - 6
f(x) + g(x) = -x5 - 7x4 - 2x3 + x2 + 4x + 8 + x5 + 7x4 + 2x3 + 3x2 - 5x - 6
= ( x5 - x5 ) + ( 7x4 - 7x4 ) + ( 2x3 - 2x3 ) + ( 3x2 + x2 ) + ( 4x - 5x ) + ( 8 - 6 )
= 4x2 - x + 2
g(x) - f(x) = x5 + 7x4 + 2x3 + 3x2 - 5x - 6 - ( -x5 - 7x4 - 2x3 + x2 + 4x + 8 )
= x5 + 7x4 + 2x3 + 3x2 - 5x - 6 + x5 + 7x4 + 2x3 - x2 - 4x - 8
= ( x5 + x5 ) + ( 7x4 + 7x4 ) + ( 2x3 + 2x3 ) + ( 3x2 - x2 ) + ( -5x - 4x ) + ( -6 - 8 )
= 2x5 + 14x4 + 4x3 + 2x2 -9x - 14
Đặt H(x) = g(x) + f(x)
=> H(x) = 4x2 - x + 2
H(x) = 0 <=> 4x2 - x + 2 = 0
<=> x(4x - 1) = -2
x | -1 | -2 | 1 | 2 |
4x-1 | 2 | 1 | -2 | -1 |
x | 1/4 | 1/2 | -1/4 | 0 |
loại | loại | loại | loại |
=> Không có giá trị x thỏa mãn
Vậy H(x) vô nghiệm
Mình chỉ biết làm thế này thôi
Đặt F(x)=0
\(\Leftrightarrow\left(x^2+2\right)\left(2x^2-8x\right)=0\)
\(\Leftrightarrow2x\left(x^2+2\right)\left(x-4\right)=0\)
mà 2>0
và \(x^2+2>0\forall x\)
nên x(x-4)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
Vậy: S={0;4}