Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3 :
1. Thay x = -5 vào f(x) ta được :
\(\left(-5\right)^2-4\left(-5\right)+5=50\)
Vậy x = -5 không là nghiệm của đa thức trên .
Bài 2 :
1. Ta có : \(f_{\left(x\right)}=x\left(1-x\right)+\left(2x^2-x+4\right)\)
=> \(f_{\left(x\right)}=x-x^2+2x^2-x+4\)
=> \(f_{\left(x\right)}=x^2+4\)
=> \(x^2+4=0\)
Vậy đa thức trên vô nghiệm .
2. Ta có \(g_{\left(x\right)}=x\left(x-5\right)-x\left(x+2\right)+7x\)
=> \(g_{\left(x\right)}=x^2-5x-x^2-2x+7x\)
=> \(g_{\left(x\right)}=0\)
Vậy đa thức trên vô số nghiệm .
3. Ta có : \(h_{\left(x\right)}=x\left(x-1\right)+1\)
=> \(h_{\left(x\right)}=x^2-x+1\)
=> \(h_{\left(x\right)}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
=> \(\left(x-\frac{1}{2}\right)^2=-\frac{3}{4}\)
Vậy đa thức vô nghiệm .
Bài 3:
\(f\left(x\right)=x^2+4x-5.\)
+ Thay \(x=-5\) vào đa thức \(f\left(x\right)\) ta được:
\(f\left(x\right)=\left(-5\right)^2+4.\left(-5\right)-5\)
\(\Rightarrow f\left(x\right)=25+\left(-20\right)-5\)
\(\Rightarrow f\left(x\right)=25-20-5\)
\(\Rightarrow f\left(x\right)=5-5\)
\(\Rightarrow f\left(x\right)=0.\)
Vậy \(x=-5\) là nghiệm của đa thức \(f\left(x\right).\)
Chúc bạn học tốt!
\(F\left(x\right)=3x-6;x=\dfrac{6}{3}=2\)
\(H\left(x\right)=-5x+30;x=-\dfrac{30}{5}=-6\)
\(G\left(x\right)=\left(x-3\right)\left(16-4x\right)\Leftrightarrow\left[{}\begin{matrix}x-3=0;x=3\\16-4x=0;x=4\end{matrix}\right.\)
\(K\left(x\right)=x^2-81=\left(x-9\right)\left(x+9\right)\Leftrightarrow\left[{}\begin{matrix}x=-9\\x=9\end{matrix}\right.\)
\(M\left(x\right)=x^2+7x-8=\left(x-1\right)\left(x+8\right);\left[{}\begin{matrix}x=1\\x=-8\end{matrix}\right.\)
\(N\left(x\right)=5x^2+9x+4\)
\(N\left(x\right)=5x^2+5x+4x+4=5x\left(x+1\right)+4\left(x+1\right)\)
\(N\left(x\right)=\left(x+1\right)\left(5x+4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{4}{5}\end{matrix}\right.\)
Bài 1:
a) \(x^2+7x-8=x^2+2.x.\frac{7}{2}+\frac{49}{4}-\frac{81}{4}\)
\(=\left(x+\frac{7}{2}\right)^2-\frac{81}{4}=0\)
\(\Rightarrow\left(x+\frac{7}{2}\right)^2=\frac{81}{4}\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{7}{2}=\frac{9}{2}\\x+\frac{7}{2}=\frac{-9}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-8\end{cases}}\)
Vậy nghiệm của đa thức m(x) là 1 hoặc -8
b) \(\left(x-3\right)\left(16-4x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\16-4x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=4\end{cases}}\)
Vậy nghiệm của đa thức g(x) là 3 hoặc 4
c) \(5x^2+9x+4=0\)
\(\Rightarrow x^2+\frac{9}{5}x+\frac{4}{5}=0\)
\(\Rightarrow x^2+2x.\frac{9}{10}+\frac{81}{100}-\frac{1}{100}=0\)
\(\Rightarrow\left(x+\frac{9}{10}\right)^2-\frac{1}{100}=0\)
\(\Rightarrow\left(x+\frac{9}{10}\right)^2=\frac{1}{100}\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{9}{10}=\frac{1}{10}\\x+\frac{9}{10}=\frac{-1}{10}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-4}{5}\\x=-1\end{cases}}\)
Vậy...
a)\(m\left(x\right)=x^2+7x-8\)
Cho \(m\left(x\right)=0\Rightarrow x^2+7x-8=0\)
\(\Rightarrow x^2-x+8x-8=0\)
\(\Rightarrow x\left(x-1\right)+8\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(x+8\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x+8=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-8\end{matrix}\right.\)
b)\(f\left(x\right)=\left(x-3\right)\left(16-4x\right)\)
Cho \(f\left(x\right)=0\Rightarrow\left(x-4\right)\left(16-4x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-4=0\\16-4x=0\end{matrix}\right.\)\(\Rightarrow x=4\)
c)\(n\left(x\right)=5x^2+9x+4\)
Cho \(n\left(x\right)=0\Rightarrow5x^2+9x+4=0\)
\(\Rightarrow5x^2+4x+5x+4=0\)
\(\Rightarrow x\left(5x+4\right)+\left(5x+4\right)=0\)
\(\Rightarrow\left(x+1\right)\left(5x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+1=0\\5x+4=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{4}{5}\end{matrix}\right.\)
a/ \(f\left(-\dfrac{1}{2}\right)=4.\left(-\dfrac{1}{2}\right)^2+3.\left(-\dfrac{1}{2}\right)-2\)
\(=4\cdot\dfrac{1}{4}-\dfrac{3}{2}-2=1-\dfrac{3}{2}-2=-\dfrac{5}{2}\)
b/
\(f\left(x\right)+g\left(x\right)-h\left(x\right)=4x^2+3x-2+x^2+2x+3-5x^2+2x-8\)
\(=\left(4x^2+x^2-5x^2\right)+\left(3x+2x+2x\right)+\left(-2+3-8\right)\)
\(=7x-7\)
Ta có: \(f\left(x\right)+g\left(x\right)-h\left(x\right)=7x-7=0\)
\(\Leftrightarrow7x=7\Rightarrow x=1\)
Vậy để...............
c/ \(g\left(x\right)=x^2+2x+3=\left(x^2+2x+1\right)+2=\left(x+1\right)^2+2\)
Vì \(\left(x+1\right)^2\ge0\forall x\Rightarrow\left(x+1\right)^2+2\ge2\)
hay \(\left(x+1\right)^2+2>0\)
\(\Rightarrow g\left(x\right)\) vô nghiệm (đpcm)
Giải:
a) Để đa thức có nghiệm thì
\(x^2-4x=0\)
\(\Leftrightarrow\left(x-4\right)x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
Vậy ...
b) Để đa thức có nghiệm thì
\(\left(x-3\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-4\end{matrix}\right.\)
Vậy ...
c) Để đa thức có nghiệm thì
\(\left(x-1\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x^2+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x\in\varnothing\end{matrix}\right.\)
Vậy ...
Các ý còn lại làm tương tự.
a) \(\Leftrightarrow x\left(x-4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
...
..
f) \(\Leftrightarrow x^2+\dfrac{7}{2}x+\dfrac{5}{2}=0\)
\(\Leftrightarrow\left(x^2+\dfrac{7}{4}x\right)+\left(\dfrac{7}{4}x+\dfrac{7.7}{4.4}\right)+\dfrac{5}{2}-\dfrac{49}{16}=0\)
\(\Leftrightarrow x\left(x+\dfrac{7}{4}\right)+\dfrac{7}{4}\left(x+\dfrac{7}{4}\right)=\dfrac{49-5.8}{16}=\dfrac{9}{16}\)
\(\Leftrightarrow\left(x+\dfrac{7}{4}\right)^2=\left(\dfrac{3}{4}\right)^2\)
\(\left|x+\dfrac{7}{4}\right|=\dfrac{3}{4}\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7}{4}-\dfrac{3}{4}=\dfrac{-5}{2}\\x=-\dfrac{7}{4}+\dfrac{3}{4}=-1\end{matrix}\right.\)
a: \(B=\left|2-x\right|+1.5>=1.5\)
Dấu '=' xảy ra khi x=2
b: \(B=-5\left|1-4x\right|-1\le-1\)
Dấu '=' xảy ra khi x=1/4
g: \(C=x^2+\left|y-2\right|-5>=-5\)
Dấu '=' xảy ra khi x=0 và y=2
a) 0.8
c) ko có nghiệm
d) 0
e) 1