Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2 \(x^3\)- 6x = 0 \(\Leftrightarrow\)x [2x -6] = 0
<=> x= 0 hoặc 2x-6 = 0
<=> x = 0 hoặc x = 3
Vậy nghiệm của đa thức 2x^3 -6x là : 0 , 3
\(2x^2+2x+1=0\)
\(< =>4x^2+4x+2=0\)
\(< =>\left(2x\right)^2+2.2x.1+1^2+1=0\)
\(< =>\left(2x+1\right)^2+1=0\)
Do \(\left(2x+1\right)^2\ge0=>\left(2x+1\right)^2+1>0\)
=> pt voo nghieemj
\(x^2-6x+15=0\)
\(< =>x^2-2.x.3+9+6=0\)
\(< =>\left(x-3\right)^2+6=0\)
Do \(\left(x-3\right)^2\ge0=>\left(x-3\right)^2+6>0\)
=> da thuc vo nghiem
1) Ta có: 2x2 + 2x + 1 = 0
<=> x2 + (x2 + 2x + 1) = 0
<=> x2 + (x+ 1)2 = 0 <=> x = x+ 1 = 0 (Vì x2 \(\ge\) 0 và (x+ 1)2 \(\ge\) 0 với mọi x)
x = x+ 1 => 0 = 1 Vô lý
Vậy đa thức đã cho ko có nghiệm
2) a) x3-2x2-5x+6 = 0
=> x3 - x2 - x2 + x - 6x + 6 = 0
=> ( x3 - x2) - (x2 - x) - (6x - 6) = 0 => x2.(x- 1) - x(x - 1) - 6(x - 1) = 0
=> (x - 1).(x2 - x - 6) = 0 => (x -1).(x2 - 3x + 2x - 6) = 0
=> (x- 1).[x(x - 3) + 2.(x - 3)] = 0 => (x - 1).(x + 2).(x - 3) = 0
=> x- 1= 0 hoặc x + 2 = 0 hoặc x - 3 = 0
=> x = 1 hoặc x = -2 hoặc x = 3
Đa thức đã cho có 3 nghiệm là: 1; -2 ; 3
b) x3 + 3x2 - 6x - 8 = 0
=> x3 + x2 + 2x2 + 2x - 8x - 8 = 0
=> x2.(x + 1) + 2x.(x + 1) - 8 (x + 1) = 0
=> (x+ 1). [x2 + 2x - 8] = 0
=> (x+1).[x2 + 4x - 2x - 8] = 0 => (x +1).[x.(x+4) - 2.(x+4)] = 0
=> (x +1). (x -2). (x+4) = 0
=> x+ 1 hoặc x - 2 = 0 hoặc x+ 4 = 0
=> x = -1 hoặc x = 2 hoặc x = -4
Đa thức đã cho có 3 nghiệm là -1; 2; -4
Ta có P(x)=0
=> \(2x^3-6x=0\)
=> 2x(x-3)=0
=> x=0 hoặc x-3=0
+) x=0
+) x-3=0
x=3
Vậy x=0 hoặc x=3 là nghiệm của đa thức P(x)
2x^2-6x+2=0
2(×^2-3×+1)=0
×^2-3×+1=0
(×^2-3×+9/4)-5/4=0
(×-3/2)^2=5/4
×-3/2=+-căn 5/2
×=3+-căn5+3/2
Đặt \(2x^2-6x+3=0\)
\(\Delta=\left(-6\right)^2-4.3.2=36-24=12>0\)
\(x_1=\frac{6-\sqrt{12}}{2};x_2=\frac{6+\sqrt{12}}{2}\)
\(2x^3-6x\)
\(2x^3-6x=0\)
\(2x.\left(x^2-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x=0\\x^2-3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x^2=3\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=\pm\sqrt{3}\end{cases}}}\)