Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A)\(x^2+5x-6=x^2-x+6x-6\)
\(=x\left(x-1\right)+6\left(x-1\right)\)
\(=\left(x+6\right)\left(x-1\right)\)
x + 6 = 0 x = - 6
| x - 1 = 0 x = 1 |
Có : \(2x^2+9x-11=0\)
\(2x^2-2x+11x-11=0\)
\(\Rightarrow2x\left(x-1\right)+11\left(x-1\right)=0\)
\(\Rightarrow\left(2x+11\right).\left(x-1\right)=0\)
=> 2x + 11 =0 hoặc x-1 = 0
=> x = \(\dfrac{-11}{2}\)hoặc x =1
VÌ \(\frac{1}{2}\)là nghiệm của đa thức \(M\left(x\right)\)nên ta có :
\(M\left(\frac{1}{2}\right)=a\cdot\left(\frac{1}{2}\right)^2+5\cdot\frac{1}{2}-3=0\)
\(\Leftrightarrow M\left(\frac{1}{2}\right)=\frac{1}{4}a-\frac{1}{2}=0\)
\(\Rightarrow\frac{1}{4}a=\frac{1}{2}\Rightarrow a=2\)
Vậy hệ số a=2
k cho mình nha bạn !
Vì đa thức M(x) có nghiệm là 1/2 suy ra x=1/2 ta có:
M(1/2)=a.(1/2)2 +5.1/2-3=0
M(1/2)=a.1/4-1/2=0
M(1/2)=a.1/4=1/2
=> a=1/2:1/4=2. Vậy a=2
lop 7 co hoc tim nghiem a (nghiem la gia tri cua bien de da thuc do nhan gia tri la 0)
P(x)=...
vì 3x^4>=0; (1/2)x^2>=0
100>=
suy ra P(x) > 0 (luon dung voi x thuoc so thuc) <=> vo nghiem
F(x)=x^2-2x+2012
<=> F(x)=x^2-2x+1+2011
<=> F(x)=(x-1)^2+2011
vi (x-1)^2>=0 voi moi x thuoc so thuc
suy ra F(x)>0 voi moi x thuoc so thuc <=> vo nghiem
Bài 1 :
\(A=x^2-2xy^2+y^4=\left(x-y^2\right)^2=-\left(y^2-x\right)^2\)
Mà \(B=-\left(y^2-x\right)^2\)
Nên ta có : đpcm
Bài 2
Đặt \(\left(x+1\right)\left(x-2\right)\left(2x-1\right)=0\)
TH1 : x = -1
TH2 : x = 2
TH3 : x = 1/2
Bài 4 :
a, \(\left(2x+3\right)\left(5-x\right)=0\Leftrightarrow x=-\frac{3}{2};5\)
b, \(\left(x-\frac{1}{2}\right)\left(3x+1\right)\left(2-x\right)=0\Leftrightarrow x=\frac{1}{2};-\frac{1}{3};2\)
c, \(x^2+2x=0\Leftrightarrow x\left(x+2\right)=0\Leftrightarrow x=0;-2\)
d, \(x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow x=0;1\)
\(-2x^2-8x+2=0\)
\(< =>-\left(\left(\sqrt{2}x\right)+2.\sqrt{2}x.\frac{4}{\sqrt{2}}+8\right)+8+2=0\)
\(< =>\sqrt{10}^2-\left(\sqrt{2}x+8\right)^2=0\)
\(< =>\left(\sqrt{10}-\sqrt{2}x-8\right)\left(\sqrt{10}+\sqrt{2}x+8\right)=0\)
\(< =>\orbr{\begin{cases}-\sqrt{2}x=8-\sqrt{10}\\\sqrt{2}x=-8-\sqrt{10}\end{cases}< =>\orbr{\begin{cases}x=\frac{\sqrt{10}-8}{\sqrt{2}}\\x=\frac{-\sqrt{10}-8}{\sqrt{2}}\end{cases}}}\)