Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: Tìm nghiệm của các đa thức:
1. P(x) = 2x -3
⇒2x-3=0
↔2x=3
↔x=\(\frac{3}{2}\)
2. Q(x) = −12−12x + 5
↔-12-12x+5=0
↔-12x=0+12-5
↔-12x=7
↔x=\(\frac{7}{-12}\)
3. R(x) = 2323x + 1515
↔2323x+1515=0
↔2323x=-1515
↔x=\(\frac{-1515}{2323}\)
4. A(x) = 1313x + 1
↔1313x + 1=0
↔1313x=-1
↔x=\(\frac{-1}{1313}\)
5. B(x) = −34−34x + 1313
↔−34−34x + 1313=0
↔-34x=0+34-1313
↔-34x=-1279
↔x=\(\frac{1279}{34}\)
Câu 2: Chứng minh rằng: đa thức x2 - 6x + 8 có hai nghiệm số là 2 và 4
Giải :cho x2 - 6x + 8 là f(x)
có:f(2)=22 - 6.2 + 8
=4-12+8
=0⇒x=2 là nghiệm của f(x)
có:f(4)=42 - 6.4 + 8
=16-24+8
=0⇒x=4 là nghiệm của f(x)
Câu 3: Tìm nghiệm của các đa thức sau:
1.⇒ (2x - 4) (x + 1)=0
↔2x-4=0⇒2x=4⇒x=2
x+1=0⇒x=-1
-kết luận:x=2 vàx=-1 là nghiệm của A(x)
2. ⇒(-5x + 2) (x-7)=0
↔-5x + 2=0⇒-5x=-2⇒
x-7=0⇒x=7
-kết luận:x=\(\frac{2}{5}\)và x=7 là nghiệm của B(x)
3.⇒ (4x - 1) (2x + 3)=0
⇒4x-1=0↔4x=1⇒x=\(\frac{1}{4}\)
2x+3=0↔2x=3⇒x=\(\frac{3}{2}\)
-kết luận:x=\(\frac{1}{4}\)và x=\(\frac{3}{2}\) là nghiệm của C(x)
4. ⇒ x2- 5x=0
↔x.x-5.x=0
↔x.(x-5)=0
↔x=0
x-5=0⇒x=5
-kết luận:x=0 và x=5 là nghiệm của D(x)
5. ⇒-4x2 + 8x=0
↔-4.x.x+8.x=0
⇒x.(-4x+x)=0
⇒x=0
-4x+x=0⇒-3x=0⇒x=0
-kết luận:x=0 là nghiệm của E(x)
Câu 4: Tính giá trị của:
1. f(x) = -3x4 + 5x3 + 2x2 - 7x + 7 tại x = 1; 0; 2
-X=1⇒f(x) =4
-X=0⇒f(x) =7
-X=2⇒f(x) =89
2. g(x) = x4 - 5x3 + 7x2 + 15x + 2 tại x = -1; 0; 1; 2
-X=-1⇒G(x) =-14
-X=0⇒G(x) =2
-X=1⇒G(x) =20
-X=2⇒G(x) =43
Bài 1 :
Theo bài ra ta có : \(f\left(x\right)=2x^4-3x^2-2x^4+4x^3-2x+3x-15\)
\(=-3x^2+4x^3+x-15\)
\(g\left(x\right)=-4x^3-3x^4-2x+x^2+2+3x^4-12\)
\(=-4x^3-2x+x^2-10\)
\(f\left(x\right)+g\left(x\right)=-3x^2+4x^3+x-15-4x^3-2x+x^2-10\)
\(=-2x^2-x-25\)
\(g\left(x\right)-f\left(x\right)=-4x^3-2x+x^2-10+3x^2-4x^3-x+15\)
\(=-8x^3-3x+4x^2+5\)
Chị làm nốt mấy bài sau nhé, tương tự thôi
Bài 3 : a) \(M+3x^2y-4xy^2+5xy=9x^2y-7xy+6xy^2\)
\(M=\left(9x^2y-7xy+6xy^2\right)-\left(3x^2y-4xy^2+5xy\right)\)
\(M=9x^2y-7xy+6xy^2-3x^2y+4xy^2-5xy\)
\(M=\left(9x^2y-3x^2y\right)+\left(-7xy-5xy\right)+\left(6xy^2+4xy^2\right)\)
\(M=6x^2y-12xy+10xy^2\)
=> bậc của M là 3
b.
f(x) = 5x4 + 4x3 - 10x2 - 7x + 10
g(x) = 4x4 + 5x2 - 9x - 8
f(x) + g(x) = 9x4 + 4x3 - 5x2 - 16x + 2
Bài 4 : a.
f(x) = 2x5 - 7x4 + 3x3 - 10x + 1
g(x) = -9x5 - 2x4 + 15x3 + 5x2 + x + 7
b. f(x) = 2x5 - 7x4 + 3x3 - 10x + 1
g(x) = -9x5 - 2x4 + 15x3 + 5x2 + x + 7
f(x) + g(x) = -7x5 - 9x4 + 18x3 + 5x2 - 9x + 8
Trừ tương tự
Bài 5 cũng như bài 4
Mình giải giúp bạn nha:
a, \(x^2+3\times x-6\)
Có: \(x^2+3\times x-6=0\)
\(\Rightarrow x^2+2\times x\times\dfrac{3}{2}+\left(\dfrac{3}{2}\right)^2-\left(\dfrac{3}{2}\right)^2-6=0\)
\(\Rightarrow\left(x+\dfrac{3}{2}\right)^2-\dfrac{33}{4}=0\)
\(\Rightarrow\left(x+\dfrac{3}{2}\right)^2=\dfrac{33}{4}\)
\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{3}{2}=\sqrt{\dfrac{33}{4}}\\x+\dfrac{3}{2}=-\sqrt{\dfrac{33}{4}}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{33}{4}}-\dfrac{3}{2}=\dfrac{-3+\sqrt{33}}{2}\\x=-\sqrt{\dfrac{33}{4}}-\dfrac{3}{2}=-\dfrac{3+\sqrt{33}}{2}\end{matrix}\right.\)
Vậy đa thức \(x^2-3x-6\) có nghiệm là \(x=\dfrac{-3+\sqrt{33}}{2};x=-\dfrac{3+\sqrt{33}}{2}\)
b, \(4\times x^2+8\times x-4\)
Cho: \(4\times x^2+8\times x-4=0\)
\(\Rightarrow\left(4\times x^2+8\times x-4\right)\times\dfrac{1}{4}=0\times\dfrac{1}{4}\)
\(4\times x^2-\dfrac{1}{4}+8\times x\times\dfrac{1}{4}-4\times\dfrac{1}{4}=0\)
\(x^2+2\times x-1=0\)
\(x^2+x+x-1=0\)
\(x\times\left(x+1\right)+\left(x+1\right)-2=0\)
\(\Rightarrow\left(x+1\right)\left(x+1\right)=2\)
\(\Rightarrow\left(x+1\right)^2=2\)
\(\Rightarrow x+1=\pm\sqrt{2}\)
TH1: \(x+1=\sqrt{2}\Rightarrow x=\sqrt{2}-1\)
TH2: \(x+1=-\sqrt{2}\Rightarrow x=-\sqrt{2}-1\)
Vậy nghiệm của đa thức \(4\times x^2+8\times x-4\) là \(x\in\left\{\sqrt{2}-1;-\sqrt{2}-1\right\}\)
I . Trắc Nghiệm 1B . 2D . 3C . 5A II . Tự luận 2,a,Ta có: A+(x22y-2xy22+5xy+1)=-2x22y+xy22-xy-1 ⇔⇔ A=(-2x22y+xy22-xy-1) - (x22y-2xy22+5xy+1) =-2x22y+xy22-xy-1 - x22y+2xy22-5xy-1 =(-2x22y - x22y) + (xy22+ 2xy22) + (-xy - 5xy ) + (-1 - 1) = -3x22y + 3xy22 - 6xy - 2 b, thay x=1,y=2 vào đa thức A Ta có A= -3x22y + 3xy22 - 6xy - 2 = -3 . 122 . 2 + 3 .1 . 222 - 6 . 1 . 2 -2 = -6 + 12 - 12 - 2 = -8 3,Sắp xếp f(x) =9-x55+4x-2x33+x22-7x44 =9-x55-7x44-2x33+x22+4x g(x) = x55-9+2x22+7x44+2x33-3x =-9+x55+7x44+2x33+2x22-3x b,f(x) + g(x)=(9-x55-7x44-2x33+x22+4x) + (-9+x55+7x44+2x33+2x22-3x) =9-x55-7x44-2x33+x22+4x-9+x55+7x44+2x33+2x22-3x =(9-9)+(-x55+x55)+(-7x44+7x44)+(-2x33+2x33)+(x22+2x22)+(4x-3x) = 3x22 + x g(x)-f(x)=(-9+x55+7x44+2x33+2x22-3x) - (9-x55-7x44-2x33+x22+4x) =-9+x55+7x44+2x33+2x22-3x-9+x55+7x44+2x 33-x22-4x =(-9-9)+(x55+x55)+(7x44+7x44)+(2x33+2x33)+(2x22-x22)+(3x-4x) = -18 + 2x55 + 14x44 + 4x33 + x22 - x
Ta có : \(P\left(x\right)=3x^3-2x+x^2-3x^3+2x^2+3-x\)
\(=-3x+3x^2+3\)
\(Q\left(x\right)=5x^3-x^2-5x^3+4-x^2+2x-2\)
\(=-2x^2+2+2x\)
a, Sắp xếp : \(P\left(x\right)=3x^2-3x+3\)
\(Q\left(x\right)=-2x^2+2x+2\)
b, Ta có : \(A\left(x\right)=P\left(x\right)+Q\left(x\right)\)
\(\Leftrightarrow A\left(x\right)=3x^2-3x+3-2x^2+2x+2=x^2-x+5\)
Đặt \(x^2-x-5=0\)
\(\Delta=\left(-1\right)^2-4.\left(-5\right)=1+20=21>0\)
Đag nghi vô tỉ thôi KL : vonghiem mà nếu ko phải thì check hộ bài lm tớ ... Dạo này +;- đa thức như đao ý
trắc nghiệm
câu 1: c
câu 2: B
câu 3: D
câu 4: A
câu 5: C
câu 6: D
tự luận
câu 1:
a)M(x) = x4 + 2x2 + 1
b) M(x) + N(x) = -4x4 + x3 + 5x2 - 2
M(x) - N(x) = 6x4 - x3 - x2 + 4
c) \(M\left(-\dfrac{1}{2}\right)=\left(-\dfrac{1}{2}\right)^4+2\left(-\dfrac{1}{2}\right)^2+1=\dfrac{25}{16}\)
I . Trắc Nghiệm
1B . 2D . 3C . 5A
II . Tự luận
2,a,Ta có: A+(x\(^2\)y-2xy\(^2\)+5xy+1)=-2x\(^2\)y+xy\(^2\)-xy-1
\(\Leftrightarrow\) A=(-2x\(^2\)y+xy\(^2\)-xy-1) - (x\(^2\)y-2xy\(^2\)+5xy+1)
=-2x\(^2\)y+xy\(^2\)-xy-1 - x\(^2\)y+2xy\(^2\)-5xy-1
=(-2x\(^2\)y - x\(^2\)y) + (xy\(^2\)+ 2xy\(^2\)) + (-xy - 5xy ) + (-1 - 1)
= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2
b, thay x=1,y=2 vào đa thức A
Ta có A= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2
= -3 . 1\(^2\) . 2 + 3 .1 . 2\(^2\) - 6 . 1 . 2 -2
= -6 + 12 - 12 - 2
= -8
3,Sắp xếp
f(x) =9-x\(^5\)+4x-2x\(^3\)+x\(^2\)-7x\(^4\)
=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x
g(x) = x\(^5\)-9+2x\(^2\)+7x\(^4\)+2x\(^3\)-3x
=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x
b,f(x) + g(x)=(9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x) + (-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x)
=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x
=(9-9)+(-x\(^5\)+x\(^5\))+(-7x\(^4\)+7x\(^4\))+(-2x\(^3\)+2x\(^3\))+(x\(^2\)+2x\(^2\))+(4x-3x)
= 3x\(^2\) + x
g(x)-f(x)=(-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x) - (9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x)
=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x-9+x\(^5\)+7x\(^4\)+2x \(^3\)-x\(^2\)-4x
=(-9-9)+(x\(^5\)+x\(^5\))+(7x\(^4\)+7x\(^4\))+(2x\(^3\)+2x\(^3\))+(2x\(^2\)-x\(^2\))+(3x-4x)
= -18 + 2x\(^5\) + 14x\(^4\) + 4x\(^3\) + x\(^2\) - x
Cái này có cái VD : x(8 + x^2) nên nó có vẻ hơi bị trìu tượng 1 chút.
Ta có : \(M\left(x\right)=x^3\left(9x^2-1\right)-4x\left(x-1\right)+9x^5-4x^2+7+3x^4\)
\(=9x^5-4x^3-4x^2-4x+9x^5-4x^2+7+3x^4\)
\(=18x^5-4x^3-8x^2-4x+7+3x^4\)
\(N\left(x\right)=10x^2+5x^3-3x^3\left(x+1\right)-x\left(8+x^2\right)+8x-7\)
\(=10x^2+5x^3-3x^4+3x^3-8x-x^3+8x-7\)
\(=10x^2+7x^3-3x^4-7\)
Cho G(x) = 3x2 - 8x = 0
=> x(3x - 8) = 0
vậy x = 0 hoặc 3x - 8 = 0
=> 3x = -8
=> x = -8/3
Vậy x = 0 và x=-8/3 lànghiệm của đa thức G(x)