Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=4x^2-12x+11\)
\(A=\left(2x\right)^2-2.2x.3+3^2+2\)
\(A=\left(2x-3\right)^2+2\)
Ta có: \(\left(2x-3\right)^2\ge0\forall x\)
\(\Rightarrow\left(2x-3\right)^2+2\ge2\forall x\)
Dấu = xảy ra \(\Leftrightarrow\left(2x-3\right)^2=0\Leftrightarrow2x-3=0\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)
Vậy Amin=2\(\Leftrightarrow x=\frac{3}{2}\)
\(B=x^2-2x+y^2+4y+6\)
\(B=\left(x^2-2x+1\right)+\left(y^2+2.2y+2^2\right)+1\)
\(B=\left(x-1\right)^2+\left(y+2\right)^2+1\)
Ta có: \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{cases}\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\forall x;y}\)
Dấu = xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-1=0\\y+2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=-2\end{cases}}}\)
Vậy Bmin=1\(\Leftrightarrow x=1;y=-2\)
\(A=-x^2-6x+1\)
\(\Rightarrow-A=x^2+6x-1\)
\(-A=\left(x^2+2.3x+3^2\right)-10\)
\(-A=\left(x+3\right)^2-10\)
\(\Rightarrow A=-\left(x+3\right)^2+10\)
Ta có: \(\left(x+3\right)^2\ge0\forall x\Rightarrow-\left(x+3\right)^2\le0\forall x\Rightarrow-\left(x+3\right)^2+10\le10\forall x\)
Dấu = xảy ra \(\Leftrightarrow-\left(x+3\right)^2=0\Leftrightarrow\left(x+3\right)^2=0\Leftrightarrow x+3=0\Leftrightarrow x=-3\)
Vậy Amax=10\(\Leftrightarrow\)x= -3
Sửa đề:
\(B=-2x^2-8x-6\)
\(B=-2.\left(x^2+2.2x+2^2\right)+2\)
\(B=-2.\left(x+2\right)^2+2\)
Ta có: \(2.\left(x+2\right)^2\ge0\forall x\Rightarrow-2.\left(x+2\right)^2\le0\forall x\Rightarrow-2.\left(x+2\right)^2+2\le2\forall x\)
Dấu = xảy ra \(\Leftrightarrow-2.\left(x+2\right)^2=0\Leftrightarrow\left(x+2\right)^2=0\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
Vậy Bmax=2\(\Leftrightarrow x=-2\)
Đề phải là tìm min mới đúng
a, A=4x2-12x+11
=(4x2-12x+9)+2
=(2x-3)2+2
Vì (2x-3)2 \(\ge\) 0 => A=(2x-3)2+2 \(\ge\) 2
Dấu "=" xảy ra khi 2x-3=0 <=> x=3/2
Vậy Amin = 2 khi x=3/2
b, B=x2-2x+y2+4y+6
=(x2-2x+1)+(y2+4y+4)+1
=(x-1)2+(y+2)2+1
Vì \(\left(x-1\right)^2\ge0;\left(y+2\right)^2\ge0\)
\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2\ge0\)
\(\Rightarrow B=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\)
Dấu "=" xảy ra khi x=1,y=-2
Vậy Bmin = 1 khi x=1,y=-2
A = 2.(x^2-4x+4) - 18 = 2.(x-2)^2 - 18 >= -18
Dấu "=" xảy ra <=> x-2 = 0 <=> x=2
Vậy Min A = -18 <=> x=2
1) a) \(x^3-2x^2y+xy^2-25x=x\left(x^2-2xy+y^2-25\right)\)
\(=x\left[\left(x-y\right)^2-5^2\right]=x\left(x-y-5\right)\left(x-y+5\right)\)
b)\(x^2-y^2-2x-2y=\left(x^2-2x+1\right)-\left(y^2+2y+1\right)=\left(x-1\right)^2-\left(y+1\right)^2\)
\(=\left(x-1-y-1\right)\left(x-y+y+1\right)=\left(x-y-2\right)\left(x+1\right)\)
\(2x^3-5x^2+8x+a=2x\left(x^2-2x+3\right)-\left(x^2-2x+3\right)+a+3\)
\(\left(2x^3-5x^2+8x+a\right)⋮\left(x^2-2x+3\right)\Leftrightarrow a+3=0\Leftrightarrow a=-3\)
áp dụng CT này vô nha:
\(A=\text{ax}^2+bx+c=a\left(x+\dfrac{b}{2a}\right)^2+\dfrac{4ac-b^2}{4a}\left(a\ne0\right)\)
nếu a<0 thì \(A\le\dfrac{4ac-b^2}{4a}\) tại \(x=-\dfrac{b}{2a}\)
nếu a>0 thì \(A\ge\dfrac{4ac-b^2}{4a}\) tại \(x=-\dfrac{b}{2a}\)
công thức này được áp dụng dạng bài tìm GTLN và GTNN của tam thức bậc 2 nha
áp dụng câu đầu:
\(A=2x^2-8x-10\\ A=2\left(x+\dfrac{-8}{2.2}\right)^2+\dfrac{4.2.\left(-10\right)-\left(-8\right)^2}{4.2}\ge\dfrac{4.2.\left(-10\right)-\left(-8\right)^2}{4.2}=-18\)
đẳng thức xảy ra khi \(x=-\dfrac{-8}{2.2}=2\)
vậy MIN A=-18 tại x=2
không tin thì bạn thử lại bằng máy tính nha :))
a) \(8x^3-18x^2+x+6\)
\(=8x^3-16x^2-2x^2+4x-3x+6\)
\(=8x^2\left(x-2\right)-2x\left(x-2\right)-3\left(x-2\right)\)
\(=\left(x-2\right)\left(8x^2-2x-3\right)\)
\(=\left(x-2\right)\left(8x^2-6x+4x-3\right)\)
\(=\left(x-2\right)\left[2x\left(4x-3\right)+\left(4x-3\right)\right]\)
\(=\left(x-2\right)\left(2x+1\right)\left(4x-3\right)\)
=> g(x) có 3 nghiệm là
x-2=0 <=> x=2
2x+1=0 <=> x=-1/2
4x-3=0 <=> x=3/4
vậy đa thức g(x) có nghiệm là x={2;-1/2;3/4}
b) tự làm đi (mk ko bt làm)
a 2x-6=0
<=>2x=6
=>x=3
b 2x^2-6x=0
<=>2x(x-3)=0
=>2x=0 hoặc x=3=0
=>x=0 hoặc x= 3