\(H\left(x\right)=3x^2+2x+2012\)

b) 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2019

a) \(H\left(x\right)=3x^2+2x+2012=3\left(x^2+\frac{2}{3}x+\frac{2012}{3}\right)\)

\(=3\left(x^2+2.x.\frac{1}{3}+\frac{1}{9}-\frac{1}{9}+\frac{2012}{3}\right)\)

\(=3\left[\left(x+\frac{1}{3}\right)^2+\frac{6035}{9}\right]=3\left(x+\frac{1}{3}\right)^2+\frac{6035}{3}\ge\frac{6035}{3}>0\forall x\)

Vậy đa thức vô nghiệm

b) \(D\left(x\right)=x^2+4x+4=0\Leftrightarrow\left(x+2\right)^2=0\Leftrightarrow x=-2\)

Nghiệm của đa thức là -2

c)\(F\left(x\right)=x^3-2x^2-2x+4=0\)

\(\Leftrightarrow x^2\left(x-2\right)-2\left(x-2\right)=0\Leftrightarrow\left(x-2\right)\left(x^2-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x^2-2=0\left(1\right)\end{cases}}\).Xét đa thức (1): \(x^2-2=0\Leftrightarrow x^2=2\Leftrightarrow\orbr{\begin{cases}x=\sqrt{2}\\x=-\sqrt{2}\end{cases}}\)

Vậy...

21 tháng 4 2019

a, Vô nghiệm

b, Nghiệm là x = -2

Học tốt

28 tháng 4 2018

Bài 1:

a: cho -6x+5=0

⇔ x=\(\dfrac{-5}{-6}\)=\(\dfrac{5}{6}\)

vậy nghiệm của đa thức là:\(\dfrac{5}{6}\)

b: cho x2-2x=0 ⇔ x(x-2)

⇒ x=0 / x-2=0 ⇒ x=0/2

Vậy nghiệm của đa thức là :0 hoặc 2

d : cho x2-4x+3=0 ⇔ x2-x-3x+3=0 ⇔ x(x-1) - 3(x-1)=0 ⇔ (x-3)(x-1)

\(\left[{}\begin{matrix}x-3=0\\x-1=0\end{matrix}\right.\)\(\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)

Vậy nghiệm của đa thức là 1 hoặc 3

f : Cho 3x3+x2=0 ⇔ x2(3x+1)=0

\(\left[{}\begin{matrix}x^2=0\\3x+1=0\end{matrix}\right.\)\(\left[{}\begin{matrix}x=0\\x=\dfrac{-1}{3}\end{matrix}\right.\)

Vậy nghiệm của đa thức là :0 hoặc \(\dfrac{-1}{3}\)

Xin lỗi mình không có thời gian làm hếtbucminh

29 tháng 4 2018

cảm ơn bạn nha

14 tháng 4 2018

a) \(f\left(x\right)=2x^6+3x^2+5x^3-2x^2+4x^4-x^3+1-4x^3-x^4\)

\(f\left(x\right)=2x^6+\left(4-1\right)x^4+\left(5-1-4\right)x^3+\left(3-2\right)x^2+1\)

\(f\left(x\right)=2x^6+3x^4+x^2+1\)

b) \(2.1+3.1+1+1=7\)

c) \(\left\{{}\begin{matrix}x^6\ge0\\x^4\ge0\\x^2\ge0\end{matrix}\right.\) \(\Leftrightarrow2x^6+3x^4+x^2\ge0\Rightarrow2x^6+3x^4+x^2+1\ge1\)

=> f(x) >=1 => dpcm

a) Ta có: \(5x^2-3x\left(x+2\right)\)

\(=5x^2-3x^2-6x\)

\(=2x^2-6x\)

b) Ta có: \(3x\left(x-5\right)-5x\left(x+7\right)\)

\(=3x^2-15x-5x^2-35x\)

\(=-2x^2-50x\)

c) Ta có: \(3x^2y\left(2x^2-y\right)-2x^2\left(2x^2y-y^2\right)\)

\(=3x^2y\left(2x^2-y\right)-2x^2y\left(2x^2-y\right)\)

\(=x^2y\left(2x^2-y\right)=2x^4y-x^2y^2\)

d) Ta có: \(3x^2\left(2y-1\right)-\left[2x^2\cdot\left(5y-3\right)-2x\left(x-1\right)\right]\)

\(=6x^2y-3x^2-\left[10x^2y-6x^2-2x^2+2x\right]\)

\(=6x^2y-3x^2-10x^2y+6x^2+2x^2-2x\)

\(=-4x^2y+5x^2-2x\)

e) Ta có: \(4x\left(x^3-4x^2\right)+2x\left(2x^3-x^2+7x\right)\)

\(=4x^4-16x^3+4x^4-2x^3+14x^2\)

\(=8x^4-18x^3+14x^2\)

f) Ta có: \(25x-4\left(3x-1\right)+7x\left(5-2x^2\right)\)

\(=25x-12x+4+35x-14x^3\)

\(=-14x^3+48x+4\)

7 tháng 8 2016

Câu 1:

a) \(P\left(x\right)=x^5+7x^4-9x^3+\left(-3x^2+x^2\right)-\frac{1}{4}x\)

\(P\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\)

 

\(Q\left(x\right)=-x^5+5x^4-2x^3+\left(x^2+3x^2\right)-\frac{1}{4}\)

\(Q\left(x\right)=-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)

b) \(P\left(x\right)+Q\left(x\right)=\left(x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\right)+\left(-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\right)\)

\(P\left(x\right)+Q\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)

\(P\left(x\right)+Q\left(x\right)=\left(x^5-x^5\right)+\left(7x^4+5x^4\right)-\left(9x^3+2x^3\right)+\left(-2x^2+4x^2\right)-\frac{1}{4}x-\frac{1}{4}\)

\(P\left(x\right)+Q\left(x\right)=12x^4-11x^3+2x^2-\frac{1}{4}-\frac{1}{4}\)

 

\(P\left(x\right)-Q\left(x\right)=\left(x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\right)-\left(-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\right)\)

\(P\left(x\right)-Q\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x+x^5-5x^4+2x^3-4x^2+\frac{1}{4}\)

\(P\left(x\right)-Q\left(x\right)=\left(x^5+x^5\right)+\left(7x^4-5x^4\right)+\left(-9x^3+2x^3\right)-\left(2x^2+4x^2\right)-\frac{1}{4}x+\frac{1}{4}\)

\(P\left(x\right)-Q\left(x\right)=2x^5+2x^4-7x^3-6x^2-\frac{1}{4}x+\frac{1}{4}\)

c) \(P\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\)

\(P\left(0\right)=0^5+7\cdot0^4-9\cdot0^3-2\cdot0^2-\frac{1}{4}\cdot0\)

\(P\left(0\right)=0\)

 

\(Q\left(x\right)=-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)

\(Q\left(0\right)=0^5+5\cdot0^4-2\cdot0^3+4\cdot0^2-\frac{1}{4}\)

\(Q\left(0\right)=-\frac{1}{4}\)

Vậy \(x=0\) là nghiệm của đa thức P(x) nhưng không là nghiệm của đa thức Q(x)

 

 

27 tháng 12 2019

\(f\left(x\right)+h\left(x\right)-g\left(x\right)\)

\(=\left(5x^4+3x^2+x-1\right)+\left(-x^4+3x^3-2x^2-x+2\right)\)

\(-\left(2x^4-x^3+x^2+2x+1\right)\)

\(=\left(5x^4-x^4-2x^4\right)+\left(3x^3+x^3\right)+\left(3x^2-2x^2-x^2\right)\)

\(+\left(x-x-2x\right)+\left(-1+2-1\right)\)

\(=2x^4+4x^3-2x\)

6 tháng 3 2019

1. a)

\(h\left(0\right)=1+0+0+....+0=1\)

\(h\left(1\right)=1+\left(1+1+....+1\right)\)

( x thừa số 1)

\(=x+1\)

Với x là số chẵn

\(h\left(-1\right)=1+\left(-1\right)+\left(-1\right)^2+\left(-1\right)^3+...+\left(-1\right)^{x-1}+\left(-1\right)^x=1-1+1-1+...-1+1-1=-1\)

Với x là số lẻ

\(h\left(-1\right)=1-1+1-1+1-....+1-1\) =0

b) Tương tự

7 tháng 8 2020

\(P\left(x\right)-Q\left(x\right)=\left(-2x+\frac{1}{2}x^2+3x^4-3x^2-3\right)-\left(3x^4+x^3-4x^2+1,5x^3-3x^4+2x+1\right)\\ P\left(x\right)-Q\left(x\right)=-2x+\frac{1}{2}x^2+3x^4-3x^2-3-3x^4-x^3+4x^2-1,5x^3+3x^4-2x-1\\ P\left(x\right)-Q\left(x\right)=\left(-2x-2x\right)+\left(\frac{1}{2}x^2-3x^2+4x^2\right)+\left(3x^4-3x^4+3x^4\right)+\left(-3-1\right)+\left(-x^3-1,5x^3\right)\\ P\left(x\right)-Q\left(x\right)=-4x+\frac{3}{2}x^2+3x^4-4-\frac{5}{2}x^3\)

\(R\left(x\right)+P\left(x\right)-Q\left(x\right)+x^2=2x^3-\frac{3}{2}x+1\\ \Rightarrow R\left(x\right)+\left(P\left(x\right)-Q\left(x\right)\right)+x^2=2x^3-\frac{3}{2}x+1\\ \Rightarrow R\left(x\right)-4x+\frac{3}{2}x^2+3x^4-4-\frac{5}{2}x^3+x^2=2x^3-\frac{3}{2}x+1\\ \Rightarrow R\left(x\right)-4x+\left(\frac{3}{2}x+x^2\right)+3x^4-4-\frac{5}{2}x^3=2x^3-\frac{3}{2}x+1\\ \Rightarrow R\left(x\right)-4x+\frac{5}{2}x^2+3x^4-4-\frac{5}{2}x^3=2x^3-\frac{3}{2}x+1\\ \Rightarrow R\left(x\right)=2x^3-\frac{3}{2}x+1+4x-\frac{5}{2}x^2-3x^4+4+\frac{5}{2}x^3\\ \Rightarrow R\left(x\right)=\left(2x^3+\frac{5}{2}x^3\right)+\left(\frac{-3}{2}x+4x\right)+\left(1+4\right)-\frac{5}{2}x^2-3x^4\\ \Rightarrow R\left(x\right)=\frac{9}{2}x^3+\frac{5}{2}x+5-\frac{5}{2}x^2-3x^4\)

16 tháng 5 2017

f(x) + g(x) - h(x) = (x5 - 4x3 + x2 - 2x + 1) + (x5 - 2x4 + x2 - 5x + 3) - (x4 - 3x2 + 2x - 5)

= x5 - 4x3 + x2 - 2x + 1 + x5 - 2x4 + x2 - 5x + 3 - x4 + 3x2 - 2x + 5

= (x5 + x5) - (2x4 + x4) - 4x3 + ( x2 + x2 + 3x2) - (2x + 5x + 2x) + (1 + 3 + 5)

= 2x5 - 3x4 - 4x3 + 5x2 - 9x + 9

f(x)=

23 tháng 8 2018

f(x) + g(x) - h(x) = (x5 - 4x3 + x2 - 2x + 1) + (x5 - 2x4 + x2 - 5x + 3) - (x4 - 3x2 + 2x - 5)

= x5 - 4x3 + x2 - 2x + 1 + x5 - 2x4 + x2 - 5x + 3 - x4 + 3x2 - 2x + 5

= (x5 + x5) - (2x4 + x4) - 4x3 + ( x2 + x2 + 3x2) - (2x + 5x + 2x) + (1 + 3 + 5)

= 2x5 - 3x4 - 4x3 + 5x2 - 9x + 9