\(x^2+2x+4y^2-4y+z\)
b, \(x^3-x^2-4x+4\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2018

a) \(\left(3x-5\right)\left(2x+3\right)-\left(2x-3\right)\left(3x+7\right)-2x\left(x-4\right)\)

\(=\left(6x^2-x-15\right)-\left(6x^2+5x-21\right)-\left(2x^2-8x\right)\)

\(=6x^2-x-15-6x^2-5x+21-2x^2+8x\)

\(=-2x^2+2x+6\)

\(=-2\left(x^2-x-3\right)\)

b) \(\left(x^2+2\right)^2-\left(x+2\right)\left(x-2\right)\left(x^2+4\right)\)

\(=\left(x^2+2\right)^2-\left(x^2-4\right)\left(x^2+4\right)\)

\(=\left(x^2+2\right)^2-\left(x^4-16\right)\)

\(=\left(x^4+4x^2+4\right)-\left(x^4-16\right)\)

\(=x^4+4x^2+4-x^4+16\)

\(=4x^2+20\)

\(=4\left(x^2+5\right)\)

c) \(\left(2x-y\right)^2-2\left(x+3y\right)^2-\left(1+3x\right)\left(3x-1\right)\)

\(=\left(4x^2-4xy+y^2\right)-2\left(x^2+6xy+9y^2\right)-\left(9x^2-1\right)\)

\(=4x^2-4xy+y^2-2x^2-16xy-18y^2-9x^2+1\)

\(=-7x^2-20xy-17y^2+1\)

d) \(\left(x^2-1\right)^3-\left(x^4+x^2+1\right)\left(x^2-1\right)\)

\(=\left(x^6-3x^4+3x^2-1\right)-\left(x^6-1\right)\)

\(=x^6-3x^4+3x^2-1-x^6+1\)

\(=-3x^4+3x^2\)

\(=-3x^2\left(x^2-1\right)\)

\(=-3x^2\left(x-1\right)\left(x+1\right)\)

e) \(\left(2x-1\right)^2-2\left(4x^2-1\right)+\left(2x+1\right)^2\)

\(=\left(2x-1\right)^2-2\left(2x-1\right)\left(2x+1\right)+\left(2x+1\right)^2\)

\(=\left[\left(2x-1\right)-\left(2x+1\right)\right]^2\)

\(=\left(2x-1-2x-1\right)^2\)

\(=\left(-2\right)^2=4\)

g) \(\left(x-y+z\right)^2+\left(y-z\right)^2-2\left(x-y+z\right)\left(z-y\right)\)

\(=\left(x-y+z\right)^2+2\left(x-y+z\right)\left(y-z\right)+\left(y-z\right)^2\)

\(=\left(x-y+z+y+z\right)^2\)

\(=\left(x+2z\right)^2\)

h) \(\left(2x+3\right)^2+\left(2x+5\right)^2-\left(4x+6\right)\left(2x+5\right)\)

\(=\left(2x+3\right)^2-2\left(2x+3\right)\left(2x+5\right)+\left(2x+5\right)^2\)

\(=\left[\left(2x+3\right)-\left(2x+5\right)\right]^2\)

\(=\left(2x+3-2x-5\right)^2\)

\(=\left(-2\right)^2=4\)

i) \(5x^2-\dfrac{10x^3+15x^2-5x}{-5x}-3\left(x+1\right)\)

\(=5x^2-\dfrac{-5x\left(-2x^2-3x+1\right)}{-5x}-3\left(x+1\right)\)

\(=5x^2-\left(-2x^2-3x+1\right)-3\left(x+1\right)\)

\(=5x^2+2x^2+3x-1-3x-3\)

\(=7x^2-4\)

19 tháng 5 2017

câu A thiếu đề

B=\(x^2-2x+2017=\left(x-1\right)^2+2016>=2016\)

Min B=2016 khi x-1=0<=>x=1

+)D=\(-2x^2+4x+2017=-2\left(x^2-2x+1\right)+2019=-2\left(x-1\right)^2+2019< =2019\)

=>Max D=2019, dấu '=' xảy ra khi x-1=0<=>x=1

19 tháng 5 2017

Bổ sung câu A. \(A=x^2+2xy+3y^2-4y+2017\)

18 tháng 1 2017

a, x3-3x+2=x3-x-2x+2=[x3-x]-[2x-2]=x[x2-1]-2[x-1]=x[x-1][x+1]-2[x-1]=[x-1][x[x+1]+2]=[x-1][x2+x+2]

b,x3-2x2-x+2=[x3-2x2]-[x-2]=x2[x-2]-[x-2]=[x-2][x2-1]=[x-2][x-1][x+1]

c,2x2+x+4=2[x2+x/2+2]

d,x2-2x+y2+4y+5=0

[x2-2x+1]+[y2+4y+4]=0

[x-1]2+[y+2]2=0

x-1=0suy rax=1

hoac y+2=0 suy ra y=-2

18 tháng 1 2017

Bậc 3 nhẩm được nghiệm chơi tốt

a)

x(x^2-1)-2(x-1)=(x-1)(x^2-3)=>\(x=1;+-\sqrt{3}\)

b) x(x^2-1)-2(x^2-1)=(x^2-1)(x-2)=(x-2)(x-1)(x+1)=> x=-1,1,2

c) mỏi rồi

11 tháng 1 2017

a)pt<=>(x-2)(x-1)=0

b)<=>(x-1)(2x-3)=0

c)\(pt\Leftrightarrow\left(x+3\right)^2+1>0\)

d)\(\left(x-2\right)\left(x-1\right)\left(x+2\right)=0\)

mk pt hộ bn r` đấy, h thì quá dễ

11 tháng 1 2017

a, x^2-3x+2

=x^2-x-2x+2

=x(x-1)-2(x-1)

=(x-1)(x-2)

PT : (x-1)(x-2)=0

=> Nghiem cua PT : x=1 va x=2

b, 2x^2-5x+3

=2x^2-2x-3x+3

=2x(x-1)-3(x-1)

=(2x-3)(x-1)

PT : (2x-3)(x-1)=0

Vay nghiem cua PT x=1,5 va x=1

c, x^2+6x+10

=x^2+6x+9+1

=(x+3)^2+1

PT : (x+3)^2+1=0

Vay nghiem cua PT tren vo nghiem .

d, x^3-x^2-4x+4

=x^3-4x-x^2+4

=x(x^2-4)-(x^2-4)

=x(x-2)(x+2)-(x-2)(x+2)

=(x-2)(x+2)(x-1)

PT : (x-2)(x+2)(x-1)=0

Vay nghiem cua PT la :x=2;-2;1

6 tháng 8 2020

a) \(x^2+4y^2-6x-4y+10=0\)

\(\Leftrightarrow\left(x^2-6x+9\right)+\left(4y^2-4y+1\right)=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(2y-1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-3=0\\2y-1=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=3\\y=\frac{1}{2}\end{cases}}\)

b) \(2x^2+y^2+2xy-10x+25=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2-10x+25\right)=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(x-5\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x+y=0\\x-5=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=-5\\x=5\end{cases}}\)

c) \(x^2+2xy+4x-4y-2xy+5=0\)

\(\Leftrightarrow x^2-4x-4y+5=0\)

Xem lại đề câu c).

6 tháng 8 2020

a) x2 + 4y2 - 6x - 4y + 10 = 0

<=> x2 - 6x + 9 + 4y2 - 4y + 1 = 0

<=> ( x - 3 )2 + ( 4y - 1 )2 = 0

<=> \(\hept{\begin{cases}x-3=0\\4y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=\frac{1}{4}\end{cases}}\)

b) 2x2 + y2 + 2xy - 10x + 25 = 0

<=> x2 + 2xy + y2 + x2 - 10x + 25 = 0

<=> ( x + y )2 + ( x - 5 )2 = 0

<=> \(\hept{\begin{cases}x+y=0\\x-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=0\\x=5\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-5\\x=5\end{cases}}\)

c) Xem lại đề 

1 tháng 10 2018

A=\(x^3-2x^2+x\)

=x.(x2-2x+1)

=x(x-1)2

B=\(2x^2+4x+2-2y^2\)

=\(2\left(x^2+2x+1-y^2\right)\)

=\(2.\left[\left(x+1\right)^1-y^2\right]\)

=\(2\left(x+1-y\right)\left(x+1+y\right)\)

C=\(2xy-x^2-y^2+16\)

=\(-\left(-2xy+x^2+y^2-16\right)\)

=\(-\left[\left(x-y\right)^2-4^2\right]\)

=-(x-y-4)(x-y+4)

D=\(x^3+2x^2y+xy^2-9x\)

=\(x\left(x^2+2xy-y^2-9\right)\)

=\(x.\left[\left(x-y\right)^2-3^2\right]\)

=x.(x-y-3)(x-y+3)

E=\(2x-2y-x^2+2xy-y^2\)

\(=\left(2x-2y\right)-\left(x^2-2xy+y^2\right)\)

=\(2\left(x-y\right)-\left(x-y\right)\left(x-y\right)\)

=(x-y)(2x-2y-x+y)

=(x-y)(x+y)

1 tháng 10 2018

ở câu B:

(x+1)^1 sửa giùm mk thành (x+1)^2

1 tháng 10 2020

Bạn tự tách hđt nhé! Gõ mỏi tay :v~

\(\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2=\left(y+z-2x\right)^2+\left(z+x-2y\right)^2+\left(y+z-2z\right)^2\)

\(y^2-2yz+z^2+z^2-2xz+x^2+x^2-2xy+y^2=\)\(6(z^2-yz-xz+y^2-xy+x^2)\)

\(2\left(x^2+y^2+z^2-yz-xz-xy\right)\)=\(6(z^2-yz-xz+y^2-xy+x^2)\)

\(x^2+y^2+z^2-yz-xz-xy\) = \(3(z^2-yz-xz+y^2-xy+x^2)\)

\(2x^2+2y^2+2z^2-2xy-2xz-2yz=0\)

\(\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)

\(\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\ge0\forall x;y;z\)

Do đó \(\left\{{}\begin{matrix}x=y\\y=z\\z=x\end{matrix}\right.\)

\(x=y=z\)

1 tháng 10 2020

j lắm thế :)))

Bài 2 : ~ bài 1 ngán quá =)))

a, Có

\(5x^2+10y^2-6xy-4x-2y+3\)

\(=\left(x^2-6xy+9y^2\right)+\left(4x^2-4x+1\right)+\left(y^2-2y+1\right)+1\)

\(=\left(x-3y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2+1>0\forall x;y\)

Do đó không tồn tại x , y tm \(5x^2+10y^2-6xy-4x-2y+3=0\)

b, \(x^2+4y^2+z^2-2x-6x+6y+15=0\)

Câu này đề sai :v bài ngta không cho 2 lần x vậy đâu bạn :)))

23 tháng 10 2016

a) \(4x^2-12x=-9\)

\(\Leftrightarrow4x^2-12x+9=0\)

\(\Leftrightarrow\left(2x-3\right)^2=0\)

\(\Leftrightarrow2x-3=0\Leftrightarrow x=\frac{3}{2}\)

b) \(\left(5-2x\right)\left(2x+7\right)=4x^2-25\)

\(\Leftrightarrow\left(5-2x\right)\left(2x+7\right)+\left(25-4x^2\right)=0\)

\(\Leftrightarrow\left(5-2x\right)\left(2x+7\right)+\left(5-2x\right)\left(5+2x\right)=0\)

\(\Leftrightarrow\left(5-2x\right)\left(2x+7+5+2x\right)=0\)

\(\Leftrightarrow\left(5-2x\right)\left(4x+12\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{5}{2}\\x=-3\end{array}\right.\)

c)\(x^3+27+\left(x+3\right)\left(x-9\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9+x-9\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2-2x\right)=0\)

\(\Leftrightarrow\left(x+3\right)x\left(x-2\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-3\\x=0\\x=2\end{array}\right.\)

d) \(4\left(2x+7\right)^2-9\left(x+3\right)^2=0\)

\(\Leftrightarrow\left[2\left(2x+7\right)-3\left(x+3\right)\right]\left[2\left(2x+7\right)+3\left(x+3\right)\right]=0\)

\(\Leftrightarrow\left(4x+14-3x-9\right)\left(4x+14+3x+9\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(7x+23\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-5\\x=-\frac{23}{17}\end{array}\right.\)