Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(3x-5\right)\left(2x+3\right)-\left(2x-3\right)\left(3x+7\right)-2x\left(x-4\right)\)
\(=\left(6x^2-x-15\right)-\left(6x^2+5x-21\right)-\left(2x^2-8x\right)\)
\(=6x^2-x-15-6x^2-5x+21-2x^2+8x\)
\(=-2x^2+2x+6\)
\(=-2\left(x^2-x-3\right)\)
b) \(\left(x^2+2\right)^2-\left(x+2\right)\left(x-2\right)\left(x^2+4\right)\)
\(=\left(x^2+2\right)^2-\left(x^2-4\right)\left(x^2+4\right)\)
\(=\left(x^2+2\right)^2-\left(x^4-16\right)\)
\(=\left(x^4+4x^2+4\right)-\left(x^4-16\right)\)
\(=x^4+4x^2+4-x^4+16\)
\(=4x^2+20\)
\(=4\left(x^2+5\right)\)
c) \(\left(2x-y\right)^2-2\left(x+3y\right)^2-\left(1+3x\right)\left(3x-1\right)\)
\(=\left(4x^2-4xy+y^2\right)-2\left(x^2+6xy+9y^2\right)-\left(9x^2-1\right)\)
\(=4x^2-4xy+y^2-2x^2-16xy-18y^2-9x^2+1\)
\(=-7x^2-20xy-17y^2+1\)
d) \(\left(x^2-1\right)^3-\left(x^4+x^2+1\right)\left(x^2-1\right)\)
\(=\left(x^6-3x^4+3x^2-1\right)-\left(x^6-1\right)\)
\(=x^6-3x^4+3x^2-1-x^6+1\)
\(=-3x^4+3x^2\)
\(=-3x^2\left(x^2-1\right)\)
\(=-3x^2\left(x-1\right)\left(x+1\right)\)
e) \(\left(2x-1\right)^2-2\left(4x^2-1\right)+\left(2x+1\right)^2\)
\(=\left(2x-1\right)^2-2\left(2x-1\right)\left(2x+1\right)+\left(2x+1\right)^2\)
\(=\left[\left(2x-1\right)-\left(2x+1\right)\right]^2\)
\(=\left(2x-1-2x-1\right)^2\)
\(=\left(-2\right)^2=4\)
g) \(\left(x-y+z\right)^2+\left(y-z\right)^2-2\left(x-y+z\right)\left(z-y\right)\)
\(=\left(x-y+z\right)^2+2\left(x-y+z\right)\left(y-z\right)+\left(y-z\right)^2\)
\(=\left(x-y+z+y+z\right)^2\)
\(=\left(x+2z\right)^2\)
h) \(\left(2x+3\right)^2+\left(2x+5\right)^2-\left(4x+6\right)\left(2x+5\right)\)
\(=\left(2x+3\right)^2-2\left(2x+3\right)\left(2x+5\right)+\left(2x+5\right)^2\)
\(=\left[\left(2x+3\right)-\left(2x+5\right)\right]^2\)
\(=\left(2x+3-2x-5\right)^2\)
\(=\left(-2\right)^2=4\)
i) \(5x^2-\dfrac{10x^3+15x^2-5x}{-5x}-3\left(x+1\right)\)
\(=5x^2-\dfrac{-5x\left(-2x^2-3x+1\right)}{-5x}-3\left(x+1\right)\)
\(=5x^2-\left(-2x^2-3x+1\right)-3\left(x+1\right)\)
\(=5x^2+2x^2+3x-1-3x-3\)
\(=7x^2-4\)
câu A thiếu đề
B=\(x^2-2x+2017=\left(x-1\right)^2+2016>=2016\)
Min B=2016 khi x-1=0<=>x=1
+)D=\(-2x^2+4x+2017=-2\left(x^2-2x+1\right)+2019=-2\left(x-1\right)^2+2019< =2019\)
=>Max D=2019, dấu '=' xảy ra khi x-1=0<=>x=1
a, x3-3x+2=x3-x-2x+2=[x3-x]-[2x-2]=x[x2-1]-2[x-1]=x[x-1][x+1]-2[x-1]=[x-1][x[x+1]+2]=[x-1][x2+x+2]
b,x3-2x2-x+2=[x3-2x2]-[x-2]=x2[x-2]-[x-2]=[x-2][x2-1]=[x-2][x-1][x+1]
c,2x2+x+4=2[x2+x/2+2]
d,x2-2x+y2+4y+5=0
[x2-2x+1]+[y2+4y+4]=0
[x-1]2+[y+2]2=0
x-1=0suy rax=1
hoac y+2=0 suy ra y=-2
Bậc 3 nhẩm được nghiệm chơi tốt
a)
x(x^2-1)-2(x-1)=(x-1)(x^2-3)=>\(x=1;+-\sqrt{3}\)
b) x(x^2-1)-2(x^2-1)=(x^2-1)(x-2)=(x-2)(x-1)(x+1)=> x=-1,1,2
c) mỏi rồi
a)pt<=>(x-2)(x-1)=0
b)<=>(x-1)(2x-3)=0
c)\(pt\Leftrightarrow\left(x+3\right)^2+1>0\)
d)\(\left(x-2\right)\left(x-1\right)\left(x+2\right)=0\)
mk pt hộ bn r` đấy, h thì quá dễ
a, x^2-3x+2
=x^2-x-2x+2
=x(x-1)-2(x-1)
=(x-1)(x-2)
PT : (x-1)(x-2)=0
=> Nghiem cua PT : x=1 va x=2
b, 2x^2-5x+3
=2x^2-2x-3x+3
=2x(x-1)-3(x-1)
=(2x-3)(x-1)
PT : (2x-3)(x-1)=0
Vay nghiem cua PT x=1,5 va x=1
c, x^2+6x+10
=x^2+6x+9+1
=(x+3)^2+1
PT : (x+3)^2+1=0
Vay nghiem cua PT tren vo nghiem .
d, x^3-x^2-4x+4
=x^3-4x-x^2+4
=x(x^2-4)-(x^2-4)
=x(x-2)(x+2)-(x-2)(x+2)
=(x-2)(x+2)(x-1)
PT : (x-2)(x+2)(x-1)=0
Vay nghiem cua PT la :x=2;-2;1
a) \(x^2+4y^2-6x-4y+10=0\)
\(\Leftrightarrow\left(x^2-6x+9\right)+\left(4y^2-4y+1\right)=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(2y-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-3=0\\2y-1=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=3\\y=\frac{1}{2}\end{cases}}\)
b) \(2x^2+y^2+2xy-10x+25=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2-10x+25\right)=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(x-5\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x+y=0\\x-5=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=-5\\x=5\end{cases}}\)
c) \(x^2+2xy+4x-4y-2xy+5=0\)
\(\Leftrightarrow x^2-4x-4y+5=0\)
Xem lại đề câu c).
a) x2 + 4y2 - 6x - 4y + 10 = 0
<=> x2 - 6x + 9 + 4y2 - 4y + 1 = 0
<=> ( x - 3 )2 + ( 4y - 1 )2 = 0
<=> \(\hept{\begin{cases}x-3=0\\4y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=\frac{1}{4}\end{cases}}\)
b) 2x2 + y2 + 2xy - 10x + 25 = 0
<=> x2 + 2xy + y2 + x2 - 10x + 25 = 0
<=> ( x + y )2 + ( x - 5 )2 = 0
<=> \(\hept{\begin{cases}x+y=0\\x-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=0\\x=5\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-5\\x=5\end{cases}}\)
c) Xem lại đề
A=\(x^3-2x^2+x\)
=x.(x2-2x+1)
=x(x-1)2
B=\(2x^2+4x+2-2y^2\)
=\(2\left(x^2+2x+1-y^2\right)\)
=\(2.\left[\left(x+1\right)^1-y^2\right]\)
=\(2\left(x+1-y\right)\left(x+1+y\right)\)
C=\(2xy-x^2-y^2+16\)
=\(-\left(-2xy+x^2+y^2-16\right)\)
=\(-\left[\left(x-y\right)^2-4^2\right]\)
=-(x-y-4)(x-y+4)
D=\(x^3+2x^2y+xy^2-9x\)
=\(x\left(x^2+2xy-y^2-9\right)\)
=\(x.\left[\left(x-y\right)^2-3^2\right]\)
=x.(x-y-3)(x-y+3)
E=\(2x-2y-x^2+2xy-y^2\)
\(=\left(2x-2y\right)-\left(x^2-2xy+y^2\right)\)
=\(2\left(x-y\right)-\left(x-y\right)\left(x-y\right)\)
=(x-y)(2x-2y-x+y)
=(x-y)(x+y)
Bạn tự tách hđt nhé! Gõ mỏi tay :v~
\(\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2=\left(y+z-2x\right)^2+\left(z+x-2y\right)^2+\left(y+z-2z\right)^2\)
⇔ \(y^2-2yz+z^2+z^2-2xz+x^2+x^2-2xy+y^2=\)\(6(z^2-yz-xz+y^2-xy+x^2)\)
⇔ \(2\left(x^2+y^2+z^2-yz-xz-xy\right)\)=\(6(z^2-yz-xz+y^2-xy+x^2)\)
⇔ \(x^2+y^2+z^2-yz-xz-xy\) = \(3(z^2-yz-xz+y^2-xy+x^2)\)
⇔ \(2x^2+2y^2+2z^2-2xy-2xz-2yz=0\)
⇔ \(\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)
Mà \(\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\ge0\forall x;y;z\)
Do đó \(\left\{{}\begin{matrix}x=y\\y=z\\z=x\end{matrix}\right.\)
⇒ \(x=y=z\)
j lắm thế :)))
Bài 2 : ~ bài 1 ngán quá =)))
a, Có
\(5x^2+10y^2-6xy-4x-2y+3\)
\(=\left(x^2-6xy+9y^2\right)+\left(4x^2-4x+1\right)+\left(y^2-2y+1\right)+1\)
\(=\left(x-3y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2+1>0\forall x;y\)
Do đó không tồn tại x , y tm \(5x^2+10y^2-6xy-4x-2y+3=0\)
b, \(x^2+4y^2+z^2-2x-6x+6y+15=0\)
Câu này đề sai :v bài ngta không cho 2 lần x vậy đâu bạn :)))
a) \(4x^2-12x=-9\)
\(\Leftrightarrow4x^2-12x+9=0\)
\(\Leftrightarrow\left(2x-3\right)^2=0\)
\(\Leftrightarrow2x-3=0\Leftrightarrow x=\frac{3}{2}\)
b) \(\left(5-2x\right)\left(2x+7\right)=4x^2-25\)
\(\Leftrightarrow\left(5-2x\right)\left(2x+7\right)+\left(25-4x^2\right)=0\)
\(\Leftrightarrow\left(5-2x\right)\left(2x+7\right)+\left(5-2x\right)\left(5+2x\right)=0\)
\(\Leftrightarrow\left(5-2x\right)\left(2x+7+5+2x\right)=0\)
\(\Leftrightarrow\left(5-2x\right)\left(4x+12\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{5}{2}\\x=-3\end{array}\right.\)
c)\(x^3+27+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9+x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-2x\right)=0\)
\(\Leftrightarrow\left(x+3\right)x\left(x-2\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-3\\x=0\\x=2\end{array}\right.\)
d) \(4\left(2x+7\right)^2-9\left(x+3\right)^2=0\)
\(\Leftrightarrow\left[2\left(2x+7\right)-3\left(x+3\right)\right]\left[2\left(2x+7\right)+3\left(x+3\right)\right]=0\)
\(\Leftrightarrow\left(4x+14-3x-9\right)\left(4x+14+3x+9\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(7x+23\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-5\\x=-\frac{23}{17}\end{array}\right.\)