Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{1) Đ}K:\left\{{}\begin{matrix}sinx\ne0\\1-sinx\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne m\pi\\x\ne\frac{\pi}{2}+n2\pi\end{matrix}\right.\)
\(2\text{) }ĐK:\left\{{}\begin{matrix}cos\left(2x+\frac{\pi}{3}\right)\ne0\\sinx\ne0\end{matrix}\right.\Leftrightarrow\\ \left\{{}\begin{matrix}2x+\frac{\pi}{3}\ne\frac{\pi}{2}+m\pi\\x\ne n\pi\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{\pi}{12}+\frac{m\pi}{2}\\x\ne n\pi\end{matrix}\right.\)
\(3\text{) }ĐK:\left\{{}\begin{matrix}\frac{5-3cos2x}{1+sin\left(2x-\frac{\pi}{2}\right)}\ge0\\1+sin\left(2x-\frac{\pi}{2}\right)\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5-3cos2x\ge0\\sin\left(2x-\frac{\pi}{2}\right)\ne-1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}cos2x\le\frac{5}{3}\left(T/m\right)\\2x-\frac{\pi}{2}\ne\frac{3\pi}{2}+k2\pi\end{matrix}\right.\Leftrightarrow x\ne\pi+k\pi\)
\(4\text{) }ĐK:\left\{{}\begin{matrix}sin\left(x+\frac{\pi}{3}\right)\ne0\\cos\left(3x-\frac{\pi}{4}\right)\ne0\\tan\left(3x-\frac{\pi}{4}\right)\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+\frac{\pi}{3}\ne a\pi\\3x-\frac{\pi}{4}\ne\frac{\pi}{2}+b\pi\\3x-\frac{\pi}{4}\ne c\pi\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne-\frac{\pi}{3}+a\pi\\x\ne\frac{\pi}{4}+\frac{b\pi}{3}\\x\ne\frac{\pi}{12}+\frac{c\pi}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne-\frac{\pi}{3}+a\pi\\x\ne\frac{\pi}{12}+\frac{k\pi}{6}\end{matrix}\right.\)
b)đề là \(tan\left(x-15^0\right)=\frac{\sqrt{3}}{3}\)
Vì \(\frac{\sqrt{3}}{3}=tan30^0\) nên
\(\Leftrightarrow tan\left(x-15^0\right)=tan30^0\)
\(\Leftrightarrow x-15^0=30^0+k180^0\)
\(\Leftrightarrow x=45^0+k180^0\left(k\in Z\right)\)
Đk:\(sin3x\ne0\) và \(cos\frac{2\pi}{5}\ne0\)
\(\Leftrightarrow\frac{cos3x}{sin3x}-\frac{sin\frac{2\pi}{5}}{cos\frac{2\pi}{5}}=0\)
\(\Leftrightarrow cos3x\cdot cos\frac{2\pi}{5}-sin\frac{2\pi}{5}\cdot sin3x=0\)
\(\Leftrightarrow cos\left(3x+\frac{2\pi}{5}\right)=0\)
\(\Leftrightarrow3x+\frac{2\pi}{5}=\frac{\pi}{2}+k\pi\)
\(\Leftrightarrow x=\frac{\pi}{30}+\frac{k\pi}{3}\)
Câu 2 bạn coi lại đề
3.
\(1+2sinx.cosx-2cosx+\sqrt{2}sinx+2cosx\left(1-cosx\right)=0\)
\(\Leftrightarrow sin2x-\left(2cos^2x-1\right)+\sqrt{2}sinx=0\)
\(\Leftrightarrow sin2x-cos2x=-\sqrt{2}sinx\)
\(\Leftrightarrow\sqrt{2}sin\left(2x-\frac{\pi}{4}\right)=\sqrt{2}sin\left(-x\right)\)
\(\Leftrightarrow sin\left(2x-\frac{\pi}{4}\right)=sin\left(-x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{4}=-x+k2\pi\\2x-\frac{\pi}{4}=\pi+x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow...\)
4.
Bạn coi lại đề, xuất hiện 2 số hạng \(cos4x\) ở vế trái nên chắc là bạn ghi nhầm
5.
\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=2cos^2\left(\frac{\pi}{4}-x\right)-1\)
\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=cos\left(\frac{\pi}{2}-2x\right)\)
\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=sin2x\)
\(\Leftrightarrow sin2x\left(sinx-cosx.sin2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\Leftrightarrow x=...\\sinx-cosx.sin2x-1=0\left(1\right)\end{matrix}\right.\)
Xét (1):
\(\Leftrightarrow sinx-1-2sinx.cos^2x=0\)
\(\Leftrightarrow sinx-1-2sinx\left(1-sin^2x\right)=0\)
\(\Leftrightarrow2sin^3x-sinx-1=0\)
\(\Leftrightarrow\left(sinx-1\right)\left(2sin^2x+2sinx+1\right)=0\)
\(\Leftrightarrow...\)
c/
\(\Leftrightarrow\sqrt{3}tan\left(\frac{\pi}{9}-2x\right)=-3\)
\(\Leftrightarrow tan\left(\frac{\pi}{9}-2x\right)=-\sqrt{3}\)
\(\Rightarrow\frac{\pi}{9}-2x=-\frac{\pi}{3}+k\pi\)
\(\Rightarrow x=\frac{2\pi}{9}+\frac{k\pi}{2}\)
d/
\(\Leftrightarrow\left[{}\begin{matrix}tanx=5\\tan2x=tan4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=arctan\left(5\right)+k\pi\\2x=4+k\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=arctan\left(5\right)+k\pi\\x=2+\frac{k\pi}{2}\end{matrix}\right.\)
a/
ĐKXĐ: ...
\(\Leftrightarrow tanx-8\sqrt{3}=3tanx-6\sqrt{3}\)
\(\Leftrightarrow2tanx=-2\sqrt{3}\)
\(\Rightarrow tanx=-\sqrt{3}\Rightarrow x=-\frac{\pi}{3}+k\pi\)
b/
\(\Leftrightarrow tan2x=-cot\left(\frac{5\pi}{8}\right)\)
\(\Leftrightarrow tan2x=tan\left(\frac{\pi}{2}+\frac{5\pi}{8}\right)\)
\(\Leftrightarrow tan2x=tan\left(\frac{9\pi}{8}\right)\)
\(\Rightarrow2x=\frac{9\pi}{8}+k\pi\Rightarrow x=\frac{9\pi}{16}+\frac{k\pi}{2}\)
a/ \(cos\left(2x+\frac{\pi}{6}\right)=0\)
\(\Leftrightarrow2x+\frac{\pi}{6}=\frac{\pi}{2}+k\pi\)
\(\Rightarrow x=\frac{\pi}{6}+\frac{k\pi}{2}\)
b/ \(cos\left(4x-\frac{\pi}{3}\right)=1\)
\(\Leftrightarrow4x-\frac{\pi}{3}=k2\pi\)
\(\Rightarrow x=\frac{\pi}{12}+\frac{k\pi}{2}\)
c/ \(cos\left(2x+25^0\right)=-\frac{\sqrt{2}}{2}=cos135^0\)
\(\Rightarrow\left[{}\begin{matrix}2x+25^0=135^0+k360^0\\2x+25^0=-135^0+k360^0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=55^0+k180^0\\x=-80^0+k180^0\end{matrix}\right.\)
d/ \(cot\left(3x+10^0\right)=\frac{\sqrt{3}}{3}=cot60^0\)
\(\Rightarrow3x+10^0=60^0+k180^0\)
\(\Rightarrow x=\frac{50^0}{3}+k60^0\)
ĐKXĐ: ...
a.
\(\Leftrightarrow tan3x=tan\left(\frac{\pi}{4}\right)\)
\(\Leftrightarrow3x=\frac{\pi}{4}+k\pi\)
\(\Leftrightarrow x=\frac{\pi}{12}+\frac{k\pi}{3}\)
b.
\(cot4x=cot\left(-\frac{\pi}{6}\right)\)
\(\Leftrightarrow4x=-\frac{\pi}{6}+k\pi\)
\(\Leftrightarrow x=-\frac{\pi}{24}+\frac{k\pi}{4}\)
c.
\(\Leftrightarrow2x-\frac{\pi}{3}=\frac{\pi}{6}+k\pi\)
\(\Leftrightarrow x=\frac{\pi}{4}+\frac{k\pi}{2}\)