\(\frac{81}{\left(-3\right)^n}=243\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2017

\(\frac{81}{\left(-3\right)^n}=243\)

\(\frac{3^4}{\left(-3\right)^n}=3^5\)

(-3)n = 34 : 35 (34-5)

(-3)n = 3-1

=> n vô nghiệm

9 tháng 9 2016

a)n=1

b)n=4

c)n=1

d)n=6

e)n=-1

18 tháng 6 2016

\(\frac{81}{\left(-3\right)^n}=-243=\left(-3\right)^5=\)

=> 81 = (-3)n . (-3)5 

<=> (-3)4 = (-3)n+5

=> 4 = n + 5

=> n = -1

18 tháng 6 2016

\(81=\left(-3\right)^n\times\left(-243\right)\)

\(\left(-3\right)^n=\frac{81}{-243}\)

Điều này thì mình thấy vô lí

 

26 tháng 7 2016

a,\(8< 2^x\le2^9.2^{-5}\)

\(2^3< 2^x\le2^4\)

\(\Rightarrow x=4\)

b, \(27< 81^3.3^x< 243\)

\(3^3< 3^{12-x}< 3^5\)

\(\Rightarrow3< 12-x< 5\)

12-x=4

x=8

c,\(\left(\frac{2}{5}\right)^x>\left(\frac{2}{5}\right)^3.\left(\frac{2}{5}\right)^2\)

\(\left(\frac{2}{5}\right)^x>\left(\frac{2}{5}\right)^5\)

\(\Rightarrow x>5\)

x=6;7;8........

25 tháng 9 2016

tìm x, biết:

(5x+1)^2=36/49

6 tháng 9 2019

a) \(8< 2^x\le2^9.2^{-5}\)

\(\Leftrightarrow2^3< x\le2^{9-5}\)

\(\Leftrightarrow2^3< 2^x\le2^4\)

\(\Leftrightarrow3< x\le4\Leftrightarrow x=4\)

b) \(27< 81^3:3^x< 243\)

\(\Leftrightarrow3^2< \left(3^4\right)^3:3^x< 3^5\)

\(\Leftrightarrow3^2< 3^{12}:3^x< 3^5\)

\(\Leftrightarrow3^2< 3^{12-x}< 3^5\)

\(\Leftrightarrow2< 12-x< 5\)

\(\Leftrightarrow\hept{\begin{cases}x=8\\x=9\end{cases}}\)

4 tháng 9 2016

a) \(\left(\frac{1}{3}\right)^n=\frac{1}{81}\)

\(\Rightarrow\left(\frac{1}{3}\right)^n=\frac{1^4}{3^4}\)

\(\Rightarrow\left(\frac{1}{3}\right)^n=\left(\frac{1}{3}\right)^4\)

\(\Rightarrow n=4\)

Vậy n = 4

b) \(\frac{-512}{343}=\left(\frac{-8}{7}\right)^n\)

\(\Rightarrow\frac{-8^3}{7^3}=\left(\frac{-8}{7}\right)^n\)

\(\Rightarrow\left(\frac{-8}{7}\right)^3=\left(\frac{-8}{7}\right)^n\)

\(\Rightarrow n=3\)

Vậy n = 3

 

 

21 tháng 10 2019

a) Câu này thiếu đề nhé bạn.

b) \(\frac{25}{5^n}=5\)

\(\Rightarrow5^n=25:5\)

\(\Rightarrow5^n=5\)

\(\Rightarrow5^n=5^1\)

\(\Rightarrow n=1\)

Vậy \(n=1.\)

c) \(\frac{81}{\left(-3\right)^n}=-243\)

\(\Rightarrow\left(-3\right)^n=81:\left(-243\right)\)

\(\Rightarrow\left(-3\right)^n=-\frac{1}{3}\)

\(\Rightarrow\left(-3\right)^n=\left(-3\right)^{-1}\)

\(\Rightarrow n=-1\)

Vậy \(n=-1.\)

e) \(\left(\frac{1}{3}\right)^n=\frac{1}{81}\)

\(\Rightarrow\left(\frac{1}{3}\right)^n=\left(\frac{1}{3}\right)^4\)

\(\Rightarrow n=4\)

Vậy \(n=4.\)

f) \(\left(-\frac{3}{4}\right)^n=\frac{81}{256}\)

\(\Rightarrow\left(-\frac{3}{4}\right)^n=\left(-\frac{3}{4}\right)^4\)

\(\Rightarrow n=4\)

Vậy \(n=4.\)

Chúc bạn học tốt!

22 tháng 10 2019

d) \(\frac{1}{2}.2^n+4.2^n=9.2^5\)

\(\Rightarrow2^n.\left(\frac{1}{2}+4\right)=288\)

\(\Rightarrow2^n.\frac{9}{2}=288\)

\(\Rightarrow2^n=288:\frac{9}{2}\)

\(\Rightarrow2^n=64\)

\(\Rightarrow2^n=2^6\)

\(\Rightarrow n=6\)

Vậy \(n=6.\)

g) \(-\frac{512}{343}=\left(-\frac{8}{7}\right)^n\)

\(\Rightarrow\left(-\frac{8}{7}\right)^n=\left(-\frac{8}{7}\right)^3\)

\(\Rightarrow n=3\)

Vậy \(n=3.\)

h) \(5^{-1}.25^n=125\)

\(\Rightarrow5^{-1}.5^{2n}=5^3\)

\(\Rightarrow5^{-1+2n}=5^3\)

\(\Rightarrow-1+2n=3\)

\(\Rightarrow2n=3+1\)

\(\Rightarrow2n=4\)

\(\Rightarrow n=4:2\)

\(\Rightarrow n=2\)

Vậy \(n=2.\)

k) \(3^{-1}.3^n+6.3^{n-1}=7.3^6\)

\(\Rightarrow3^{n-1}+6.3^{n-1}=7.3^6\)

\(\Rightarrow3^{n-1}.\left(1+6\right)=7.3^6\)

\(\Rightarrow3^{n-1}.7=7.3^6\)

\(\Rightarrow n-1=6\)

\(\Rightarrow n=6+1\)

\(\Rightarrow n=7\)

Vậy \(n=7.\)

Chúc bạn học tốt!

7 tháng 9 2015

\(27^n:3^n=\left(27:3\right)^n=9\)

\(9^n=9\rightarrow n=1\)

\(\left(\frac{25}{5}\right)^n=5^n=5^1\)

\(\rightarrow n=1\)

\(\frac{81}{\left(-3\right)^n}=-243=\left(-3\right)^5\)

\(\rightarrow\left(-3\right)^n=81:\left(-3\right)^5=\frac{-1}{3}=\left(-3\right)^{-1}\)

\(\)

6 tháng 7 2016

\(a,\left[\left(0,5\right)^3\right]^n=\frac{1}{64}\Rightarrow\left(0,125\right)^n=0,125^2\Rightarrow n=2\)

\(b,\frac{64}{\left(-2\right)^{n+1}}=4\Rightarrow\left(-2\right)^{n+1}=\frac{64}{4}\Rightarrow\left(-2\right)^{n+1}=16\Rightarrow\left(-2\right)^{n+1}=\left(-2\right)^4\)

\(\Rightarrow n+1=4\Rightarrow n=3\)

\(c,\left(\frac{1}{3}\right)^{n+1}=\frac{1}{81}\Rightarrow\left(\frac{1}{3}\right)^{n+1}=\left(\frac{1}{3}\right)^4\Rightarrow n+1=4\Rightarrow n=3\)

\(d,\left(\frac{3}{4}\right)^n.\frac{1}{2}=\frac{81}{512}\Rightarrow\left(\frac{3}{4}\right)^n=\frac{81}{512}:\frac{1}{2}=\frac{81}{256}\Rightarrow\left(\frac{3}{4}\right)^n=\left(\frac{3}{4}\right)^4\Rightarrow n=4\)