Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\dfrac{\left(2n-3\right)}{n-2}\)(n ∈ Z, n ≠ 2)
a)Ta có \(\dfrac{\left(2n-3\right)}{n-2}\)=\(\dfrac{\left(2n-4+1\right)}{n-2}\)=2+\(\dfrac{1}{n-2}\)
Để A đạt giá trị nguyên thì \(\dfrac{1}{n-2}\) đạt giá trị nguyên
Do đó 1 chia hết cho n-2
Suy ra n-2 là ước của 1
Suy ra n-2 thuộc -1;1
Suy ra n thuộc 1;3
vậy n thuộc 1;3
b)Vì \(\dfrac{1}{n-2}\) là phân số tối giản nên 2+\(\dfrac{1}{n-2}\) là phân số tối giản
Hay là là phân số tối giản (đpcm)
2a) với P=2 thì P+10=12
\(\Rightarrow\)p+10 là h/s( loại)
Với P=3 thì P+10=13; P+38=41
\(\Rightarrow\)tat cả đều là n/t
Với P>3 cơ 3p+1 hoặc 3k+2
+ Nếu P=3p+1 thì P+38=3p+1+39=3p+39\(⋮\)
Vậy P=3p+1 là không thỏa mãn
+ Nếu P= 3k+2 thì P+10=3k+2+10=3k+12\(⋮\)3
Vậy P=3k+2 là không thỏa mãn
Vậy P=3
b) với p=2 thì P+2=4
\(\Rightarrow\)p+2 là h/s ( loại)
Với P=3 thì p+6=9
\(\Rightarrow\)p+6 là h/s ( loại)
Với P=5 thì P+2=7; P+6=11; P+14=19; P+18=23
\(\Rightarrow\)tat cả đều là n/t
Với P>5 có 5p+1,5n+2,5k+3,5t+4
Với P=5p+1 thì P+14=5p+1+14=5p+15\(⋮\)5
Với P=5n+2 thì P+18=5n+2+18=5n+20\(⋮\)5
Với P=5k+3 thì P+2=5k+3+2=5k+5\(⋮\)5
Với P=5t+4 thì P+6=5t+4+6=5t+10\(⋮\)5
Vậy P=5
n+5/n+2=n+2+3/n+2=>(n+2/n+2)+3
=mà 3 là số nguyên=>n+2 cung là 1 số nguyên
=>n+2 là bội (hay ước mình ko nhớ) của 1
bạn tụ lập bảng nhé
chú ý nếu cần số âm, dương
Để \(\dfrac{n+5}{n+2}\) là số nguyên thì
\(\Rightarrow\)n+5 \(⋮\) n+2
\(\Rightarrow\)n+5 -n+2 \(⋮\) n + 2
\(\Rightarrow\) n + 5 - n - 2 \(⋮\) n+2
\(\Rightarrow\) 3 \(⋮\) n+2
\(\Rightarrow\) n+2 \(\in\) Ư(3) = {1;3;-1;-3}
\(\Rightarrow\) n = {-1;1;-3;-5}