K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2018

Câu hỏi của sato rika - Toán lớp 6 - Học toán với OnlineMath

17 tháng 11 2018

vì : 3.( n + 4 ) \(⋮\) n + 4  

để : ( 16 - 3n ) \(⋮\) n + 4 thì :

[ ( 16 - 3n ) + 3( n + 4 ) ] \(⋮\) n +  4  hay 28 \(⋮\)n + 4

=> n + 4 \(\in\) { 1;2;4;7;14;28 }

vì \(0\le n\le6\) nên \(4\le n+4\le10\)

từ đó ta có : n + 4 thuộc { 4;7 } hay n thuộc { 0;3 }

17 tháng 8 2018

Bài 1:

- Gọi 6 số từ nhiên liên tiếp là a ; a+ 1; a+2 ; a+3 ; a+4 ; a+5 (a : tự nhiên)

Tổng của chúng là:

a+ (a+1) + (a+2) +(a+3)+(a+4)+(a+5)

= 6a+15

Ta có: 6a chia hết cho 6 với mọi a.

15 không chia hết cho 6.

=> Tổng của chung không chia hết cho 6.

13 tháng 8 2018

Làm từng phần thôi dài quá

Bài 1 :

Gọi số tự nhiên đầu tiên tiên là a

=> a + a + 1 + a + 2 + a + 3 + a + 4 + a + 5

= 6a + 15

mà 6a chia hết cho 6; 15 ko chia hết cho 6 => tổng đó KO chia hết

13 tháng 8 2018

Bài 2 :

Ta thấy : 3^2018 có tận cùng là 1 số lẻ

11^2017 cũng có tận cùng là một số lẻ

=> 3^2018 - 11^2017 là một số chẵn => 3^2018 - 11^2017 chia hết cho 2

12 tháng 8 2018

Bài 1:

Tổng của 6 STN liên tiếp coi là:

\(a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)+\left(a+4\right)+\left(a+5\right)\)

\(=6a+15⋮̸6\)

KL: Tổng của 6 STN liên tiếp không chia hết cho 6.

Bài 2:

\(3\equiv1\left(mod2\right)\Rightarrow3^{2018}\equiv1\left(mod2\right)\)( 1 )

\(11\equiv1\left(mod\right)2\Rightarrow11^{2017}\equiv1\left(mod2\right)\)( 2 )

Từ ( 1 ) và ( 2 ) => \(3^{2018}-11^{2017}\equiv1-1=0\left(mod2\right).\)

KL; đpcm.

Bài 3 :

a) \(n+4⋮n\Rightarrow4⋮n\Leftrightarrow n\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}.\)

KL: ...

b) \(3n+7⋮n\Rightarrow7⋮n\Leftrightarrow n\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}.\)

KL: ...

21 tháng 7 2018

a,

Ta có n \(⋮\)n => 4 \(⋮\)n

=> n \(\in\)Ư ( 4 ) = { 1 ; - 1 ; 2 ; - 2 ; 4 ; - 4 }

Vì n là số tự nhiên => n \(\in\){ 1 ; 2 ; 4 }

b,

Ta có 3n \(⋮\)n => 7 \(⋮\)n

=> n \(\in\)Ư ( 7 ) = { 1 ; 7 }

c,

5n \(⋮\)n => 27 \(⋮\)n

=> n \(\in\)Ư ( 27 ) = { 1 ; 3 ; 9 ; 27 }

21 tháng 7 2018

a) \((n+4) \vdots 2 \Rightarrow n \vdots n;4 \vdots n \Rightarrow n \epsilon B(4) \Rightarrow n={1;2;4}\)

b)\((3n+7) \vdots n \Rightarrow 7 \vdots n \Rightarrow n=1;7\)

c)\((27-5n) \vdots n \Rightarrow 27 \vdots n ;5n \leq 27 \Rightarrow n=1;3.\)

Chúc bn học tốt (^^)

16 tháng 8 2018

bài 1 ko

bài 2

ta có \(\hept{\begin{cases}3^{2018}=3^{2016}.3^2=\left(3^4\right)^{504}.9=81^{504}.9=\cdot\cdot\cdot1.9=\cdot\cdot\cdot9\\11^{2017}=\cdot\cdot\cdot1\end{cases}}\)

\(\Rightarrow3^{2018}-11^{2017}=\cdot\cdot\cdot9-\cdot\cdot\cdot1=\cdot\cdot\cdot8⋮2\left(ĐPCM\right)\)

bài 3

a) 

\(n+4⋮n\Rightarrow4⋮n\Rightarrow n\inƯ\left(\text{4}\right)\)

\(\Rightarrow n\in\left\{1;2;4;-1;-2;-4\right\}\)

b)

\(3n+7⋮n\Rightarrow7⋮n\Rightarrow n\inƯ\left(7\right)\)

\(\Rightarrow n\in\left\{1;7;-1;-7\right\}\)

8 tháng 11 2018

n=1 bạn nhé

8 tháng 11 2018

bạn trình bày cách làm lun nha

15 tháng 1 2019

Bài 1:

a) n thuộc N

b) để 4n + 5 chia hết cho 5

=> 4n chia hết cho 5

=> n chia hết cho 5

=> n thuộc bội dương của 5

c) để 38 - 3n chia hết cho n

=> 38 chia hết cho n

=> n thuộc Ư(38) = {1;-1;2;-2;19;-19;38;-38)

...

xog bn xét gtri nha!
d) để n + 5 chia hết cho n + 1

=> n + 1 + 4 chia hết cho n + 1

=> 4 chia hết cho n + 1

=>...

e) để 3n + 4 chia hết cho n -1

=> 3n - 3 + 7 chia hết cho n - 1

3.(n-1) +7 chia hết cho n - 1

...

15 tháng 1 2019

Bài 2:

a) để 3n + 2 chia hết cho n - 1

=> 3n - 3 + 5 chia hết cho n - 1

3.(n-1) + 5 chia hết cho n - 1

...

b) n^2 + 2n + 7 chia hết cho n + 2

n.(n+2) + 7 chia hết cho n + 2

=> 7 chia hết cho n + 2

=>...

c) n^2 + 1 chia hết cho n - 1

=> n^2 - n + n - 1 + 2 chia hết cho n - 1

=> (n+1).(n-1) + 2 chia hết cho n  -1

=> 2 chia hết cho n - 1

d) n + 3 + 5 chia hết cho  n + 3

e) n -1 + 7 chia hết cho  n - 1

f) 4n - 2 + 7 chia hết cho 2n - 1

...

14 tháng 10 2019

Lưu ý là lớp 6 không cần thiết phải viết dấu "=>". 

a. Với số tự nhiên n.

Ta có: \(3n+15⋮n+4\) và \(3\left(n+4\right)⋮n+4\)

=> \(\left(3n+15\right)-3\left(n+4\right)⋮n+4\)

=> \(3n+15-3n-12⋮n+4\)

=> \(\left(3n-3n\right)+\left(15-12\right)⋮n+4\)

=> \(3⋮n+4\)

=> \(n+4\in\left\{1;3\right\}\) 

+) Với n + 4 = 1 vô lí vì n là số tự nhiên.

+) Với n + 4 = 3 vô lí vì n là số tự nhiên

Vậy không có n thỏa mãn.

b) Với số tự nhiên n.

Có: \(\left(4n+20\right)⋮\left(2n+5\right)\) và  \(2\left(2n+5\right)⋮\left(2n+5\right)\)

=> \(\left(4n+20\right)-2\left(2n+5\right)⋮2n+5\)

=> \(4n+20-4n-10⋮2n+5\)

=> \(\left(4n-4n\right)+\left(20-10\right)⋮2n+5\)

=> \(10⋮2n+5\)

=> \(2n+5\in\left\{1;2;5;10\right\}\)

+) Với 2n + 5 = 1 loại

+) với 2n + 5 = 2 loại

+) Với 2n + 5 =5 

            2n    = 5-5

              2n    = 0

            n      = 0 Thử lại thỏa mãn

+ Với 2n + 5 = 10 

            2n    = 10 -5

             2n    = 5

               n    = 5/2  loại vì n là số tự nhiên.

Vậy n = 0.