\(\left(2.8^n+n^3-16n+1\right)⋮3\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2021

\(\left(2\cdot8^n+n^3-16n+1\right)⋮3\)

Ta có \(2\cdot8^n+n^3-16n+1=2^{3n+1}+n\left(n-2\right)\left(n+2\right)+1\)

Vì \(2^{3n+1}⋮̸3;1⋮̸3\) nên \(2^{3n+1}+1⋮3;n\left(n-2\right)\left(n+2\right)⋮3\)

Ta thấy \(n;n-2;n+2\) là 3 số cách đều 2 nên tích của chúng chia hết cho 3

Vậy cần tìm n sao cho \(2^{3n+1}+1⋮3\)

Ta có \(1:3R2\) nên \(2^{3n+1}:3R2\)

Mà \(n< 200\Leftrightarrow2^{3n+1}< 2^{601}:3R2\)

Ta thấy với \(2^1;2^3;2^5;...\) đều chia 3 dư 2

Quy luật: 2 mũ lẻ chia 3 dư 2

\(\Rightarrow3n+1\in\left\{1;3;5;...;601\right\}\\ \Rightarrow n\in\left\{0;\dfrac{2}{3};\dfrac{4}{3};...;\dfrac{200}{3}\right\}\)

Mà \(n\in N\)

Vậy \(n=0\)

3 tháng 10 2021

\(1:3R2\) là j thế ạ

7 tháng 4 2017

Xét các dạng của n trong phép chia cho 2 và 3

2k  , 2k+1

3p, 3p+1. 3p+2

12 tháng 6 2020

Bài cuối có Max nữa nhé, cần thì ib mình làm cho.

Giả sử \(c=min\left\{a;b;c\right\}\Rightarrow c\le1< 2\Rightarrow2-c>0\)

Ta có:\(P=ab+bc+ca-\frac{1}{2}abc=\frac{ab}{2}\left(2-c\right)+bc+ca\ge0\)

Đẳng thức xảy ra tại \(a=3;b=0;c=0\) và các hoán vị

18 tháng 6 2020

3/ \(P=\Sigma\frac{\left(3-a-b\right)\left(a-b\right)^2}{3}+\frac{5}{2}abc\ge0\)

3 tháng 6 2019

Câu 1 bạn dùng chia hết cho 13

Câu 2 bạn cộng cả 2 vế với z^4 rồi dùng chia 8

Câu 3 bạn đặt a^4n là x thì x sẽ chia 5 dư 1 và chia hết cho 4 hoăc chia 4 dư 1

Khi đó ta có x^2+3x-4=(x-1)(x+4)

đến đây thì dễ rồi

Câu 4 bạn xét p=3 p chia 3 dư 1 p chia 3 dư 2 là ra

Câu 6 bạn phân tích biểu thức của đề thành nhân tử có nhân tử x-2

Câu 5 mình nghĩ là kẹp giữa nhưng chưa ra

3 tháng 6 2019

Cảm ơn bạn Ninh Đức Huy.