K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2016

Ta có:n2+10=n2-1+11=(n-1).(n+1)+11 mà (n-1).(n+1)+chia hết cho n+1

=>11 chia hết cho n+1

=>n+1 thuộc{-1;-11;1;11}

=>n thuộc{-2;-12;0;10}

Vậy n thuộc{-2;-12;0;10}

11 tháng 11 2016

Đặp phép chia tính được số dư của phép chia =-7 đểchia hết => -7chia hết chon+3

=>n+3laf ước của 7 kẻ bảng giá trị tính dược n =(4;-4;-2;-10)

Phần b tương tự

20 tháng 8 2015

Dô câu hỏi tương tự đi bạn :) hi

27 tháng 1 2016

a)=>(2n+10)-10 chia hết cho n+5

=>2(n+5)-10 chia hết cho n+5

Mà 2(n+5) chia hết cho n+5

=>10 chia hết cho n+5

=>n+5 thuộc Ư(10)={1;2;5;10;-1;-2;-5;-10}

=>n thuộc {-4;-3;0;5;-6;-7;-10;-15}

b)=>x(x+2) chia hết cho x+2

Mà x(x+2) chia hết cho x+2

=>Mọi số nguyên x đều thỏa mãn

27 tháng 1 2016

câu b là với mọi n thuộc Z

10 tháng 8 2017

a) ( n\(^2\) + 7n - 8) chia hết cho n+3 

Có : \(\frac{n^2+7n-8}{n+3}=n+4+\frac{-20}{n+3}\) là 1 số nguyên \(\Rightarrow-\frac{20}{n+3}\in Z\Rightarrow-20⋮n+3\Rightarrow n+3\inƯ\left(-20\right)=\) \(\left\{-20;-10;-5;-4;-2;-1;1;2;4;5;10;20\right\}\)

\(\Rightarrow n\in\left\{-23;-13;-8;-7;-5;-4;-2;0;1;2;7;17\right\}\)

b) (n\(^2\) + 5) chia hết cho n-2

\(\Rightarrow\frac{n^2+5}{n+2}=\frac{n.n+5}{n+2}=\frac{n\left(n+2\right)-2n+5}{n+2}=n-\frac{2n-5}{n+2}=n-\frac{2\left(n+2\right)-9}{n+2}\)

\(n-2+\frac{9}{n+2}\) \(;n-2\in Z\Rightarrow\frac{9}{n+2}\in Z\) \(\Rightarrow9⋮n+2\Rightarrow n+2\inƯ\left(9\right)=\left\{-1-3;-9;1;3;9\right\}\)

\(\Rightarrow n\in\left\{-3;-5;-11;-1;1;7\right\}\)

21 tháng 8 2017

Mình cũng làm như cách của Ngân 

Ủng hộ 1 TK cái !

4 tháng 9 2016

a) 3xy + x + 2y = 0

=> x.(3y + 1) = -2y

=> \(x=\frac{-2y}{3y+1}\)

Mà x nguyên => -2y chia hết cho 3y + 1

=> 2y chia hết cho 3y + 1

=> 6y chia hết cho 3y + 1

=> 6y + 2 - 2 chia hết cho 3y + 1

=> 2.(3y + 1) - 2 chia hết cho 3y + 1

Do 2.(3y + 1) chia hết cho 3y + 1 => 2 chia hết cho 3y + 1

=> \(3y+1\in\left\{1;-1;2;-2\right\}\)

Mà 3y + 1 chia 3 dư 1 => 3y + 1 \(\in\left\{1;-2\right\}\)

+ Với 3y + 1 = 1 thì 3y = 0 => y = 0

=> \(x=\frac{-2.0}{3.0+1}=\frac{0}{1}=0\)

+ Với 3y + 1 = -2 thì 3y = -3 => y = -1

=> \(x=\frac{-2.\left(-1\right)}{3.\left(-1\right)+1}=\frac{2}{-3+1}=\frac{2}{-2}=-1\)

Vậy các cặp giá trị (x;y) thỏa mãn đề bài là: (0;0) ; (-1;-1)

b) Ta có: 

10n + 45n - 1

= 10n - 1 - 9n + 54n

= 999...9 - 9n + 54n

  (n c/s 9)

= 9.(111...1 - n) + 54n

     (n c/s 1)

Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 9 mà tổng các chữ số 111...1 là n

                                                                                                                                       (n c/s 1)

=> 111...1 - n chia hết cho 3

    (n c/s 1)

=> 9.(111...1 - n) chia hết cho 27; 54n chia hết cho 27

      (n c/s 1)

=> 10n + 45n - 1 chia hết cho 27 (đpcm)