Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1.\frac{\left(-3\right)^x}{81}=-27\Rightarrow\left(-3\right)^x\div\left(-3\right)^4=\left(-3\right)^3\)
\(\Rightarrow\left(-3\right)^x=\left(-3\right)^7\Rightarrow x=7\)
\(2.\sqrt{x-5}-4=5\Rightarrow\sqrt{x-5}=9\Rightarrow\sqrt{x-5}=\sqrt{81}\Rightarrow x-5=81\Rightarrow x=86\)
\(\)
Đề A đạt giá trị nguyên
=> 3n + 9 chia hết cho n - 4
3n - 12 + 12 + 9 chia hết cho n - 4
3.(n - 4) + 2c1 chia hết cho n - 4
=> 21 chia hết cho n - 4
=> n - 4 thuộc Ư(21) = {1 ; -1 ; 3 ; -3 ; 7 ; -7 ; 21 ; -21}
Thay n - 4 vào các giá trị trên như
n - 4 = 1
n - 4 = -1
.......
Ta tìm được các giá trị :
n = {5 ; 3 ; 7 ; -1 ; 11 ; -3 ; 25 ; -17}
a) Để A thuộc Z (A nguyên)
=> 3n+9 chia hết cho n-4
hay 3n+9-12+12 chia hết cho n-4 (-12+12=0)
3n-12+9+12 chia hết cho n-4
3n-12+21 chia hết cho n-4
3(n-4)+21 chia hết cho n-4
Vì 3(n-4) luôn chia hết cho n-4 với mọi n thuộc Z=> 21 chia hết cho n-4
mà Ư(21)={21;1;7;3} nên ta có bảng:
n-4 | 21 | 1 | 3 | 7 |
n | 25 (tm) | 5 (tm) | 7 (tm) | 11 (tm) |
Vậy n={25;5;7;11} thì A nguyên.
b)
Để B thuộc Z (B nguyên)
=> 6n+5 chia hết cho 2n-1
hay 6n+5-3+3 chia hết cho 2n-1 (-3+3=0)
6n-3+5+3 chia hết cho 2n-1
6n-3+8 chia hết cho 2n-1
3(2n-1)+8 chia hết cho 2n-1
Vì 3(2n-1) luôn chia hết cho 2n-1 với mọi n thuộc Z=> 8 chia hết cho 2n-1
mà Ư(8)={8;1;2;4} nên ta có bảng:
2n-1 | 8 | 1 | 2 | 4 |
n | 4.5 (ktm) | 1 (tm) | 1.5 (ktm) | 2.5 (ktm) |
Vậy, n=1 thì B nguyên.
\(B=\frac{3n+1}{n+1}=\frac{3n+3}{n+1}-\frac{2}{n+1}=3-\frac{2}{n+1}\)
B nguyên khi \(\frac{2}{n+1}\) nguyên <=> 2 chia hết cho n+1 <=>n+1 thuộc Ư(2)={-2;-1;1;2}
<=>n thuộc {-3;-2;0;1}
\(B=\frac{3n+1}{n+1}=\frac{3\left(n+1\right)-2}{n+1}=3-\frac{2}{n+1}\)
B nguyên <=> \(\frac{2}{n+1}\)nguyên
<=> \(2⋮n+1\)<=> \(n+1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
n+1 | -2 | -1 | 1 | 2 |
n | -3 | -2 | 0 | 1 |
a) Để \(H=\frac{9}{\sqrt{n}-5}\)là 1 số nguyên
\(\Rightarrow9⋮\sqrt{n}-5\Rightarrow\sqrt{n}-5\inƯ\left(9\right)=\left(\pm1;\pm3;\pm9\right)\)
Ta có bảng sau:
\(\sqrt{n}-5\) | 1 | -1 | 3 | -3 | 9 | -9 |
\(\sqrt{n}\) | 6 | 4 | 8 | 2 | 14 | -4 |
\(n\) | 2.44 | 2 | 2.828 | 1.41 | 3.74 | -2 |
Mà \(n\in Z\Rightarrow n\in\left(2;-2\right)\)
a) A = \(\frac{3n+9}{n-4}\)= \(\frac{3\left(n-4\right)+21}{n-4}\)= 3 + \(\frac{21}{n-4}\)
Để A là số nguyên , n-4 phải là ước của 21. Ta được :
n-4 | -21 | -7 | -3 | -1 | 1 | 3 | 7 | 21 |
n | -17 | -3 | 1 | 3 | 5 | 7 | 11 | 25 |
A | 2 | 0 | -4 | -18 | 24 | 10 | 6 | 4 |
b) Biến đổi : B = 3 + \(\frac{8}{2n-1}\)
2n-1 là ước lẻ của 8 .
Đáp số :
n | 1 | 0 |
B | 11 | -5 |
a)Tại \(x=\frac{16}{9}\) ta có: \(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{\frac{16}{9}}+1}{\sqrt{\frac{16}{9}}-1}=\frac{\frac{4}{3}+1}{\frac{4}{3}-1}=\frac{\frac{7}{3}}{\frac{1}{3}}=7\)
Tại \(x=\frac{25}{9}\) ta có: \(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{\frac{25}{9}}+1}{\sqrt{\frac{25}{9}}-1}=\frac{\frac{5}{3}+1}{\frac{5}{3}-1}=\frac{\frac{8}{3}}{\frac{2}{3}}=4\)
b)Khi \(A=5\Rightarrow\frac{\sqrt{x}+1}{\sqrt{x}-1}=5\)(*)
Đk:\(\sqrt{x}-1\ne0\Rightarrow x\ne1;\sqrt{x}\ge0\Rightarrow x\ge0\)
Đặt \(\sqrt{x}+1=t\left(t\ge0\right)\),(*) trở thành
\(\frac{t}{t-2}=5\Rightarrow t=5\left(t-2\right)\)
\(\Rightarrow t=5t-10\)
\(\Rightarrow2t=5\Rightarrow t=\frac{5}{2}\)(thỏa mãn)
\(t=\frac{5}{2}\Rightarrow\sqrt{x}+1=\frac{5}{2}\)
\(\Rightarrow\sqrt{x}=\frac{3}{2}\Leftrightarrow\sqrt{x^2}=\left(\frac{3}{2}\right)^2\Leftrightarrow x=\frac{9}{4}\)(thỏa mãn)
Vậy \(x=\frac{9}{4}\)
Ta có:A=\(\frac{3n+2}{n-1}=\frac{3n-3+5}{n-1}=3+\frac{5}{n-1}\)
Để A nguyên thì \(\frac{5}{n-1}\in Z\Rightarrow n-1\inƯ\left(5\right)=\left\{-5,-1,1,5\right\}\)
\(\Rightarrow n\in\left\{-4,0,2,6\right\}\)
Vậy............
Ta có : A= (3n+2)/(n-1)
= [3.( n-1)+5]/(n-1)
=3+[5/(n-1)]
Để A nguyên thì 5 phải chia hết cho n-1
=> n-1 thuộc ước của 5
Ta có bảng sau
x-1 | 1 | -1 | 5 | -5 |
---|---|---|---|---|
x | 2 | 0 | 6 | -4 |
Vậy x\(\in\){ -4 ; 0 ; 2 ; 6 }
a)\(P\in Z\Leftrightarrow\frac{5}{\sqrt{n}-1}\in Z\Leftrightarrow5⋮\sqrt{n}-1\Leftrightarrow\sqrt{n}-1\inƯ\left(5\right)\Leftrightarrow\sqrt{n}-1\in\left(1;5;\left(-1\right);\left(-5\right)\right)\)
\(\Leftrightarrow\left\{\begin{matrix}\sqrt{n}=2\\\sqrt{n}=6\\\sqrt{n}=0\\\sqrt{n}=-4\left(voli'\right)\end{matrix}\right.\Rightarrow\left\{\begin{matrix}n=4\\n=36\\n=0\end{matrix}\right.\)
Vậy P có giá trị nguyên \(\Leftrightarrow n\in\left(4;36;0\right)\)
b)\(P=\frac{3n+2}{n+1}=\frac{3n+3-1}{n+1}=3-\frac{1}{n+1}\)
\(P\in Z\Leftrightarrow3-\frac{1}{n+1}\in Z\Leftrightarrow1⋮n+1\Leftrightarrow n+1\inƯ\left(1\right)\Leftrightarrow n+1\in\left(1;\left(-1\right)\right)\)
\(\Rightarrow\left\{\begin{matrix}n+1=1\\n+1=\left(-1\right)\end{matrix}\right.\Rightarrow\left\{\begin{matrix}n=1-1=0\\n=-1-1=-2\end{matrix}\right.\)
Vậy P có giá trị nguyên \(\Leftrightarrow n\in\left(0;-2\right)\)
#Kiều_mơn_bạn_j_đó_nhess