Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Ta có: \(A=\frac{2x+3}{x+1}=\frac{2\left(x+1\right)+1}{x+1}=2+\frac{1}{x+1}\)
Để \(A\) nguyên thì \(\Leftrightarrow\frac{1}{x+1}\) nguyên.
\(\Leftrightarrow1\) chia hết cho \(\left(x+1\right)\)
\(\Leftrightarrow\left(x+1\right)\inƯ\left(1\right)\)
\(\Leftrightarrow\left(x+1\right)\in\left\{-1;+1\right\}\)
\(\Leftrightarrow x\in\left\{0;-2\right\}\)
Vậy để \(A\) nguyên thì \(\Leftrightarrow x\in\left\{0;-2\right\}\)
1: Ta có: \(B=\frac{x^3}{x+1}+\frac{x^2}{x-3}+\frac{1}{x+1}-\frac{9}{x-3}=\frac{x^3+1}{x+1}+\frac{x^2-9}{x-3}=\frac{\left(x+1\right)\left(x^2-x+1\right)}{x+1}+\frac{\left(x-3\right)\left(x+3\right)}{x-3}=x^2-x+1+x+3=x^2+4\)
Để biểu thức B đạt giá trị nhỏ nhất thì \(x^2+4\) có giá trị nhỏ nhất
Ta có: \(x^2\ge0\forall x\)
\(\Rightarrow x^2+4\ge4\forall x\)
Dấu '=' xảy ra khi x2=0
hay x=0
Vậy: Giá trị nhỏ nhất của biểu thức \(B=\frac{x^3}{x+1}+\frac{x^2}{x-3}+\frac{1}{x+1}-\frac{9}{x-3}\)là 4 khi x=0
Để chứng minh 12n+1/30n+2 là phân số tối giản thì cần chứng tỏ 12n+1 và 30n+2 nguyên tố cùng nhau
Gọi ƯCLN(12n+1,30n+2)=d (d∈N)
=> 12n+1 chia hết cho d => 5(12n+1) chia hết cho d => 60n+5 chia hết cho d
30n+2 chia hết cho d => 2(30n+2) chia hết cho d => 60n+4 chia hết cho d
=> (60n+5)-(60n+4) chia hết cho d
=> 1 chia hết cho d
=> d∈Ư(1)={1}
=> d=1
=> ƯCLN(12n+1,30n+2)=1
Vậy 12n+1/30n+2 là phân số tối giản
k cho mk nha
a,Gọi d là ƯC(3n+1;5n+2)
3n+1 chia hết d; 5n+2 chia hết d
5(3n+1) chia hết d;3(5n+2) chia hết d
15n+5 chia hết d; 15n+6 chia hết d
1 chia hết d
d=1
tối giản với n thuộc N
B; gọi d là ƯC(12n+1;30n+2)
12n+1 chia hết d; 30n+2 chia hết d
5(12n+1) chia hết d; 2(30n+2) chia hết d
60n+5 chia hết d; 60n+4 chia hết d
1 chia hết d
d=1
tối giản ...
D;2n+1 chia hết d;2n^2-1 chia hết d
n(2n+1) chia hết d ; 2n^2-1 chia hết d
2n^2+n chia hết d ;2n^2-1 chia hết d
n+1 chia hết d
2(n+1)=2n+2 chia hết d
1 chia hết d
tối giản
a) ta có : \(\dfrac{n^3-3n^2-3n-1}{n^2+n+1}=\dfrac{n^3+n^2+n-4n^2-4n-4+3}{n^2+n+1}\)
\(=\dfrac{n\left(n^2+n+1\right)-4\left(n^2+n+1\right)+3}{n^2+n+1}=n-4+\dfrac{3}{n^2+n+1}\)
\(\Rightarrow n^2+n+1\) là ước của \(3\) \(\Rightarrow n^2+n+1\in\left\{\pm1;\pm3\right\}\)
giải tiếp nha .
câu b bn lm tương tự cho quen
b: \(\Leftrightarrow n^3+n-n^2-1+n+8⋮n^2+1\)
\(\Leftrightarrow n+8⋮n^2+1\)
\(\Leftrightarrow n^2-64⋮n^2+1\)
\(\Leftrightarrow n^2+1\in\left\{1;-1;5;-5;13;-13;65;-65\right\}\)
hay \(n\in\left\{0;2;-2;8;-8\right\}\)
a: \(\Leftrightarrow n^3+n^2+n-4n^2-4n-4+3⋮n^2+n+1\)
\(\Leftrightarrow n^2+n+1\in\left\{1;3\right\}\)
=>n(n+1)=0 hoặc (n+2)(n-1)=0
hay \(n\in\left\{0;-1;-2;1\right\}\)
Vì A, B, C thuộc Z nên tử chia hết cho mẫu, đặt phép chia ra