Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. n + 7 chia hết cho n + 1
=> n + 1 + 6 chia hết cho n + 1
Mà n + 1 chia hết cho n + 1
=> 6 chia hết cho n + 1
=> n + 1 thuộc Ư (6) = {-6; -3; -2; -1; 1; 2; 3; 6}
=> n thuộc {-7; -4; -3; -2; 0; 1; 2; 5}.
b. 2n - 1 chia hết cho n - 2
=> 2n - 4 + 3 chia hết cho n - 2
=> 2.(n - 2) + 3 chia hết cho n - 2
=> 3 chia hết cho n - 2
=> n - 2 thuộc Ư (3) = {-3; -1; 1; 3}
=> n thuộc {-1; 1; 3; 5}.
a) Ta có : n + 7 chia hết cho n + 1
=> n + 1 + 6 chia hết cho n + 1
=> 6 chia hết cho n + 1
=> n + 1 \(\in\) Ư(6) = {+1;+2;+3;+6}
Với n + 1 = 1 => n = 0
Với n + 1 = -1 => n = -2
Với n + 1 = 2 => n = 1
Với n + 1 = -2 => n = -3
Với n + 1 = 3 => n = 2
Với n + 1 = -3 => n = -4
Với n + 1 = 6 => n = 5
Với n + 1 = -6 => -7
Vậy n \(\in\) {0;-2;1;-3;2;-4;5;-7}
b) Ta có : 2n - 1 chia hết cho n - 2
=> 4n - 2 chia hết cho n - 2
=> 4(n-2) chia hết cho n - 2
=> 4 chia hết cho n - 2
=> n - 2 \(\in\) Ư(4) = {+1;+2;+4}
Tương tự câu a
n2-2n+7 chia hết cho n-1
=>n2-n+7-n chia hết cho n-1
=>n(n-1)+7-n chia hết cho n-1
=>7-n chia hết cho n-1
=>-(7-n) chia hết cho n-1
=>n-7 chia hết cho n-1
=>n-1-6 chia hết cho n-1
=>6 chia hết cho n-1
=>n-1=-6;-3;-2;-1;1;2;3;6
=>n=-5;-2;-1;0;2;3;4;7
\(a)n+7⋮n+2\)
\(\Rightarrow n+2+5⋮n+2\)
Mà n + 2 chia hết cho n + 2 => \(5⋮n+2\)=> n + 2 thuộc Ư\((5)\)\(=\left\{\pm1;\pm5\right\}\)
Lập bảng :
n + 2 | 1 | -1 | 5 | -5 |
n | -1 | -3 | 3 | -7 |
Vậy : ...
a ) n + 2 chia hết cho n - 1
=> ( n-1 ) + 3 chia hết cho n - 1
=> 3 chia hết cho n -1
=> n - 1 thược Ư(3 ) = 1 ;3
=> n thuộc 2 ; 4
Vậy ...............................
a) n + 7 chia hết cho n + 1
( n + 1 ) + 6 chia hết cho n + 1 ( 1 )
Mà n + 1 chia hết cho n + 1 (2)
Từ (1) và (2) => 6 chia hết cho n + 1
=> n + 1 E {1,-1,2,-2,3,-3,6,-6}
n E { 0,-2,1,-3,2,-4,5,-7}
b) 2n - 5 chia hết cho n + 1
( 2n + 2 ) - 2 - 5 chia hết cho n + 1
(2n + 2 ) - ( 2 + 5 ) chia hết cho n + 1
2 x ( n + 1 ) - 7 chia hết cho n + 1 (1)
Mà 2 x ( n + 1 ) chia hết cho n + 1 ( do n + 1 chia hết cho n + 1 ) (2)
Từ (1) Và ( 2 ) => 7 chia hết cho n + 1
n + 1 E { 1,-1,7,-7}
n E { 0,-2,6,-8}
k nhé
a) Vì \(n+7⋮n+1\)
=> \(n+1+6⋮n+1\)
Mà n + 1 chia hết cho n + 1
n + 1 + 6 chia hết cho n + 1
=> 6 chia hết cho n + 1
=> n + 1 thuộc Ư ( 6 )
=> n + 1 thuộc { 1 ; 2 ; 3 ; 6 }
=> n thuộc { 0 ; 1 ; 2 ; 5 }
\(n^2-2n+7=\left(n^2-n\right)-\left(n-1\right)+6=n\left(n-1\right)-\left(n-1\right)+6\)
\(=\left(n-1\right)\left(n-1\right)+6=\left(n-1\right)^2+6\)
Vì \(\left(n-1\right)^2⋮n-1\)\(\Rightarrow\)Để \(n^2-2n+7⋮n-1\)thì \(6⋮n-1\)
\(\Rightarrow n-1\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
\(\Rightarrow n\in\left\{-5;-2;-1;0;2;3;4;7\right\}\)
Vậy \(x\in\left\{-5;-2;-1;0;2;3;4;7\right\}\)