Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4n+3 chia hết cho 3n-2
<=> 3(4n+3)-4(3n-2) chia hết cho 3n-2
<=>17 chia hết cho 3n-2
<=>3n-2 E {-1;1;17;-17}
<=> 3n E {1;3;19;-15} loại các TH n ko nguyên
=>n E {1;-5}. Vậy.....
a ) n + 2 chia hết cho n - 1
=> ( n-1 ) + 3 chia hết cho n - 1
=> 3 chia hết cho n -1
=> n - 1 thược Ư(3 ) = 1 ;3
=> n thuộc 2 ; 4
Vậy ...............................
a\ -2.[n-1]+5 chia het chon n-1
vi -2.[n-1] chia het cho n-1 nen 5 chia het cho n-1
vay n-1 thuoc uoc cua 5 thuoc -1;1;-5;5
thay n-1 vao tung uoc cua 5
b\vi 3n+2 chia het cho 2n-3 nen 2[3n+2] cung chia het cho 2n-3
=6n+4 chia het cho 2n-3
3.[2n-3]+13 chia het cho 2n-3
vi 3[2n-3] chia het cho 2n-3 nen 13 cung chia het cho 2n -3
thay 2n-3 vao tung uoc cua 13 de tim ra n
oke
a)-2n+3 chia hết cho n-1
\(\Rightarrow\)(-2n+3)--2(n-1)chia hết cho n-1
\(\Rightarrow\)(-2n+3)+2(n-1)chia hết cho n-1
\(\Rightarrow\)-2n+3+2n-2chia hết cho n-1
\(\Rightarrow\)(-2n+2n)+(3-2)chia hết cho n-1
\(\Rightarrow\)1 chia hết cho n-1
từ đây tự tính
b)3n+2 chia hết cho 2n-3
\(\Rightarrow\)2(3n+2)-3(2n-3) chia hết cho 2n-3
\(\Rightarrow\)(6n+4)-(6n-9) chia hết cho 2n-3
\(\Rightarrow\)6n+4-6n+9 chia hết cho 2n-3
\(\Rightarrow\)13 chia hết cho 2n -3
sau đó lập bảng ra
kq:n=2:n=1:n=8:n=-5
\(2n+3⋮n-1\)
\(\Rightarrow2\left(n-1\right)+5⋮n-1\)
\(\Rightarrow5⋮n-1\Rightarrow n-1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow n\in\left\{2;0;6;-4\right\}\)
Vậy..............................
\(n^2-5⋮n+4\)
\(\Rightarrow n\left(n+4\right)-4n+5⋮n+4\)
\(\Rightarrow4n+5⋮n+4\)
\(\Rightarrow4\left(n+4\right)-11⋮n+4\)
\(\Rightarrow11⋮n+4\Rightarrow n+4\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
\(\Rightarrow n\in\left\{-3;-5;7;-15\right\}\)
Vậy.........................
2n - 3 chia hết cho n - 2
2n - 4 + 1 chia hết cho n - 2
2(n - 2) + 1 chia hết cho n - 2
=> 1 chia hết cho n - 2
=> n - 2 thuộc Ư(1) = {1 ; -1}
Xét 2 trường hợp , ta có:
n - 2 = 1 => n = 3
n - 2 = -1 => n = 1