Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình làm vd 2 bài nha:
a) n+6 chia hết cho n+2
n+2 chia hết cho n+2
nên (n+6)-(n+2) chia hết cho n+2
4 chia hết cho n-2
=> n-2 = 1;-1;2;-2;4;-4
=> n=3;1;4;0;6
d) n^2 +4 chia hết cho 4
n+1 chia hết cho n+1 nên (n+1)(n+1) chia hết cho n+1 hay n2+2n+1 chia hết cho n+1
=> (n^2+2n+1)-(n^2+4) chia hết cho n-1
=> 2n+1-4 chia hết cho n-1
=> 2n - 3 chia hết cho n-1
n-1 chia hết cho n-1 nên 2n-2 chia hết cho n-1
=> (2n-2)-(2n-3) chia hết cho n-1
=> 1 chia hết cho n-1
=> n-1 = 1;-1
=> n=0
Ta có: n + 6 chia hết cho n+1
n+1 chia hết cho n+1
=> [(n+6) - (n+1)] chia hết cho n+1
=> (n+6 - n - 1) chia hết cho n + 1
=> 5 chia hết cho n+1
=> n+1 thuộc { 1; 5 }
Nếu n+1 = 1 thì n = 1-1=0
Nếu n+1=5 thì n= 5-1=4.
Vậy n thuộc {0;4}
n + 4 chia hết cho n - 1
=> ( n - 1 ) + 5 chia hết cho n - 1
Mà n - 1 chia hết cho n - 1
=> 5 chia hết cho n - 1
=> n -1 thuộc Ư(5) = { 1 ; 5 }
=> n thuộc { 2 ; 6 }
a, Để \(n\in Z\)
Ta có : \(3n+2⋮2n-1\)
\(6n-3n+2⋮2n-1\)
\(3\left(2n-1\right)+2⋮2n-1\)
Vì 2 \(⋮\)2n-1 hay 2n-1\(\in\)Ư'(2)={1;-1;-2;2}
Ta có bảng
2n-1 | -1 | 1 | 2 | -2 |
2n | 0 | 2 | 3 | -1 |
n | 0 | 1 | 3/2 | -1/2 |
Vậy n = {0;1}
\(b,\frac{n+3}{n-7}=\frac{n-7+10}{n-7}=1+\frac{10}{n-7}\)
=> 10 chia hết cho n - 7
=> n - 7 thuộc Ư\((10)\)
=> n - 7 \(\in\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
Lập bảng :
n - 7 | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
n | 8 | 6 | 9 | 5 | 12 | 2 | 17 | -3 |
n thuộc Z => n+1 thuộc Z
=> n+1 thuộc Ư (16)={-16;-8;-4;-2;-1;1;2;4;8;16}
Ta có bảng
n+1 | -16 | -8 | -4 | -2 | -1 | 1 | 2 | 4 | 8 | 16 |
n | -17 | -9 | -5 | -3 | -2 | 0 | 1 | 3 | 7 | 15 |
a/ a+5 chia hết n+2
a+2+3 chia hết n+2
a+2 chia hết n+2, a+2+3 chia hết n+2 nên 3 chia hết n+2 => n+2 thuộc ước của 3
n+2={1;-1;3;-3} => tự tìm n
b/ 2n+10 chia hết n+1
hay 2(n+1) +8 chia hết n+1
2(n+1)+8 chia hết n+1, 2(n+1) chia hết n+1 nên 8 chia hết n+1. tương tự tự làm
c/ n^2+4 chia hết n+1
n+1 chia hết n+1
=> (n+1).n chia hết n+1
n^2+n chia hết n+1 mà n^2+4 cũng chia hết n+1
=> n^2+n-(n^2+4) chia hết n+1
n^2+n-n^2-4 chia hết n+1
=> n-4 chia hết n+1
n+1-5 chia hết n+1. mà n+1 chia hết n+1, n+1-5 chia hết n+1 nên 5 chia hết n+1
=> n+1 thuộc ước của 5. tự làm
Làm mẫu câu a bài 1. vì các câu còn lại tương tự
n+7 chia hết cho n-5
\(\Rightarrow\left(n+7\right)-\left(n-5\right)⋮n-5\)
\(\Rightarrow12⋮n-5\)
\(\Rightarrow n-5\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
ta có bảng :
n-5 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 12 | -12 |
n | 6 | 4 | 7 | 3 | 8 | 2 | 9 | 1 | 11 | -1 | 17 | -7 |
vậy \(n\in\left\{6;4;7;3;8;2;9;1;11;-1;17;-7\right\}\)
2. làm mẫu câu a:
(2a+3)(b-3)=-12
=>(2a+3);(b-3)\(\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
TH1:
2a+3=1 ;b-3=-12
2a=-2 =>b=-9
=>a=-1
sau đó em ghép siêu nhiều trường hợp còn lại .
có 12TH tất cả em nhé .
a) 3n + 2 chia hết cho n - 1
=>3n-3+5 chia hết cho n-1
=>3.(n-1)+5 chia hết cho n-1
=>5 chia hết cho n-1
=>n-1 thuộc Ư(5)={1;-1;5;-5}
Ta có bảng sau:
Vậy n={-4;0;2;6}
b) n2 + 2n - 7 chia hết cho n + 2
=>(n2+2n)-7 chia hết cho n+2
=>n.(n+2)-7 chia hết cho n+2
=>7 chia hết cho n+2
=>n+2 thuộc Ư(7)={1;-1;7;-7}
Ta có bảng sau:
Vậy n={-9;-3;-1;5}