K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2017

a) \(21⋮\left(n-1\right)\Rightarrow\left(n-1\right)\inƯ\left(21\right)\)

\(\Rightarrow\left(n-1\right)\in\left\{1;3;7;21\right\}\)

\(\Rightarrow n\in\left\{2;4;8;22\right\}\)

b)\(55⋮\left(2n-1\right)\Rightarrow\left(2n-1\right)\inƯ\left(55\right)\)

\(\Rightarrow\left(2n-1\right)\in\left\{1;5;11;55\right\}\)

\(\Rightarrow2n\in\left\{2;6;12;56\right\}\)

\(\Rightarrow n\in\left\{1;3;6;28\right\}\)

c) \(\frac{n+3}{n-1}=\frac{n-1+4}{n-1}=\frac{n-1}{n-1}+\frac{4}{n-1}=1+\frac{4}{n-1}\)

Vì \(1\in N\Rightarrow4⋮\left(n-1\right)\)

\(\Rightarrow\left(n-1\right)\inƯ\left(4\right)\)

\(\Rightarrow\left(n-1\right)\in\left\{1;2;4\right\}\)

\(\Rightarrow n\in\left\{2;3;5\right\}\)

d) \(\frac{2n+1}{n-1}=\frac{2n-2+3}{n-1}=\frac{2.\left(n-1\right)+3}{n-1}\)\(=\frac{2.\left(n-1\right)}{n-1}+\frac{3}{n-1}=2+\frac{3}{n-1}\)

Vì \(2\in N\Rightarrow3⋮\left(n-1\right)\Rightarrow n-1\inƯ\left(3\right)\)

\(\Rightarrow n-1\in\left\{1;3\right\}\)

\(\Rightarrow n\in\left\{2;4\right\}\)

a)  ta có Ư (7) = (-1;+1;-7;+7)

xét các trường hợp :

1: 2n + 1 = -1  => n= (-1) -1 :2=-1

2: 2n + 1 = 1  => n= 1 -1 : 2 = 0

3: 2n + 1 = -7 => n= -7 -1 : 2 = -3

4: 2n + 1 = 7 => n= 7 -1 : 2 = 3

mỏi quá trường hợp còn lại q1 tự sét nha

Câu a, trên làm rồi và câu b làm tương tự mk làm các câu sau nha

c) ta có n-6 chia hết cho n-6

=>n-6-(n+5) chia hết cho n-6 

=>-11 chia hết cho n-6 

Làm tương tự 

3 tháng 2 2018

2)

a) 2n+5 chia het cho n-1 

=> 2(n-1) +7 chia het cho n-1 

=: n-1 thuoc uoc cua 7 den day ke bang la xong. 

may cau con lai lam tuong tu

3 tháng 2 2018

dài quá ko mún làm

24 tháng 10 2018

\(a,n+6⋮n+3\)

\(\Rightarrow n+3+3⋮n+3\)

mà \(n+3⋮n+3\Rightarrow3⋮n+3\)

\(\Rightarrow n+3\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

Với n + 3 = 1 => n = -2 

    n + 3 = -1 => n = -4

  n +3 = 3 = > n= 0

n+ 3 = -3 => n= -6 

\(\Rightarrow n\in\left\{-2;-4;0;-6\right\}\)

b, \(2n+9⋮n+2\)

\(2.n+2+7⋮n+2\)

mà \(2\left(n+2\right)⋮n+2\)

\(\Rightarrow7⋮n+2\Rightarrow n+2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

........ 

bn lm như trên 

24 tháng 10 2018

\(c,2n+7⋮n+1\)

\(\Rightarrow2n+1+6⋮n+1\)

mà \(2.\left(n+1\right)⋮n+1\Rightarrow6⋮n+1\)

\(\Rightarrow n+1\inƯ\left(6\right)=\left\{1;-1;2;-2;6;-6\right\}\)

........ như phần vừa nãy 

\(d,n+3⋮n-1\)

\(\Rightarrow n+4-1⋮n-1\)

\(\Rightarrow n-1+4\)

mà \(n-1⋮n-1\Rightarrow4⋮n-1\)

\(\Rightarrow n\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

......  

8 tháng 10 2017

a) (n+2) \(⋮\) (n-1)

vì (n-1)\(⋮\) (n-1)

=>(n+2)-(n-1)\(⋮\left(n-1\right)\)

=>(n+2-n+1)\(⋮\) (n-1)

=> 3\(⋮\) (n-1)

=>(n-1)\(\in\) Ư(3) = { \(\pm\)1,\(\pm\)3}

ta có bảng

n-1 -1 1 -3

3

n 0 2 -2 4
loại

vậy n\(\in\) { 0;2;4}

8 tháng 10 2017

b) \(\left(2n+7\right)⋮\left(n+1\right)\)

\(\left(n+1\right)⋮\left(n+1\right)\)

=>\(2\left(n+1\right)⋮\left(n+1\right)\)

=> \(\left(2n+2\right)⋮\left(n+1\right)\)

=>\(\left(2n+7\right)-\left(2n+2\right)⋮\left(n+1\right)\)

=>\(\left(2n+7-2n-2\right)⋮\left(n+1\right)\)

=>\(5⋮\left(n+1\right)\)

=> \(\left(n+1\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

TA CÓ BẢNG

n+1 -5 -1 1 5
n -6 -2 0 4
loại loại

vậy \(n\in\left\{0;4\right\}\)

8 tháng 10 2016

a/ \(\frac{n+2}{n-1}=\frac{n-1+3}{n-1}=1+\frac{3}{n-1}\)

Để n + 2 chia hết cho n - 1 thì 3 phải chia hết cho n - 1 hay n -1 phải là ước của 3

=> n - 1 = {-3; -1; 1; 3} => n = {-2; 0; 2; 4}

b/  \(\frac{2n+7}{n+1}=\frac{2n+2+5}{n+1}=\frac{2\left(n+1\right)+5}{n+1}=2+\frac{5}{n+1}\)

Để 2n + 7 chia hết cho n + 1 thì 5 phải chia hết cho n +1 hay n +1 phải là ước của 5

=> n + 1 = {-5; -1; 1; 5} => n = {-6; -2; 0; 4}

Các câu còn lại làm tương tự

27 tháng 9 2015

a) Ta có: n+4 chia hết cho 4.

Suy ra 4 chia hết cho n.Vậy n=1;2

b, 3n+7 chia hết cho n => 7 chia hết n

Vậy n=1

còn nhiều quá