Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
a. \(2n=2\left(n+1\right)-2\text{ là bội của }n+1\)khi \(2\text{ là bội của }n+1\)
\(\Leftrightarrow n+1\in\left\{\pm1,\pm2\right\}\Rightarrow n\in\left\{-3,-2,0,1\right\}\)
b. \(2n+3=2\left(n-2\right)+7\text{ là bội của }n-2\text{ khi 7 là bội của }n-2\)
\(\Leftrightarrow n-2\in\left\{\pm1,\pm7\right\}\Rightarrow n\in\left\{-5,1,3,9\right\}\)
a , Ta có : 4n - 5 chia hết cho n .
\(\Rightarrow\)n \(\in\)Ư (5) = { ± 1 ; ± 5 }
Vậy n \(\in\){ ± 1 ; ± 5 }
b , Ta có : - 11 chia hết cho n - 1
\(\Rightarrow\)n - 1 \(\in\)Ư (11) = { ± 1 ; ± 11 }
n - 1 | 1 | - 1 | 11 | - 11 |
n | 2 | 0 | 12 | - 10 |
Vậy n \(\in\) { 2 ; 0 ; 12 ; - 10 }
c , Ta có : 3n + 2 chia hết 2n - 1
\(\Rightarrow\)2 ( 3n + 2 ) chia hết 2n - 1
\(\Rightarrow\)6n + 4 chia hết 2n - 1
\(\Rightarrow\)3 ( 2n - 1 ) + 7 chia hết 2n - 1
\(\Rightarrow\)2n - 1 \(\in\)Ư (7) = { ± 1 ; ± 7 }
2n - 1 | 1 | - 1 | 7 | - 7 |
2n | 2 | 0 | 8 | - 6 |
n | 1 | 0 | 4 | - 3 |
Vậy n \(\in\){ 1 ; 0 ; 4 ; - 3 }
a, n-1 nhận các giá trị là : 1 , -1 , 11, -11
suy ra n nhận các giá trị là : 2 , 0 , 12 , -10
a.
(-2)4.17.(-3)0.(-5)6.(-12n)
=16.17.1.15625.-1
=(16.15625).[1.(-1)].17
=250000.(-1).17
=4250000
b.3(2x2-7)=33
2x2-7 =33:3
2x2-7 =11
2x2 =11+7
2x2 =18
x2 =18:2
x2 =9
x2 =\(\left(\pm3^2\right)\)
\(\Rightarrow\) TH1: x2 =32 TH2: x2 =(-3)2
\(\Rightarrow\) x =3 \(\Rightarrow\)x =-3
Vậy x\(\in\left\{3;-3\right\}\)
2n-1 là bội của n+3
=> 2n-1 chia hết n+3
Ta có : n+3 chia hết n+3
=>2(n+3) chia hết n+3
=>2n+6 chia hết n+3
=>((2n+6)-(2n-1)) chia hết cho n+3
=>(2n+6-2n+1) chia hết n+3
<=> 7 chia hết n+3
=> n+3 \(\in\) Ư(7)
=>n+3 \(\in\)(-1;-7;7;1)
ta có
n+3 | -1 | -7 | 7 | 1 |
n | -4 | -10 | 4 | -2 |
vậy n \(\in\)(-4;-10;4;-2)
a)4n-5 chia hết cho n
Vì 4n chia hết cho n
=>5 chia hết cho n.
=> n thuộc Ư(5)
=>n thuộc (1;-1;5;-5)
b)-11 là bội của n-1
=>n-1 thuộc Ư(-11)
=>n-1 thuộc (-1;1;-11;11)
=>n thuộc (0;2;-10;12)
c)2n-1 là ước của 3n+2
=>3n+2 chia hết cho 2n-1
=>2(3n+2) chia hết cho 2n-1
=>6n+4 chia hết cho 2n-1
=> 6n-3+7 chia hết cho 2n-1
Vì 6n-3 chia hết cho 2n-1
=>7 chia hết cho 2n-1
=> 2n-1 thuộc Ư(7)
=>2n-1 thuộc (1;-1;7;-7)
=>2n thuộc (0;2;8;-6)
=>n thuộc (0;1;4;-3)
-11 là bội của n-1
=> -11 chia hết cho n-1
=> n-1 thuộc Ư(-11)
n-1 | n |
1 | 2 |
-1 | 0 |
11 | 12 |
-11 | -10 |
KL: n thuộc......................
Nếu tôi ngu thì cậu thử làm đi?Cả cách làm cụ thể nhé!
Bài 1:
a) Vì 10n luôn luôn có cs tận cùng là 0 (luôn luôn 10;100;1000;... đều trừ 1 thì đều chia hết cho 9)
suy ra 10n-1 chia hết cho 9
b) Vì 10n luôn luôn có cs tận cùng là 0
ta có 10n sẽ có tổng các cs của nó là 1
Vậy 10n+8 sẽ có tổng các cs là 9
Mà 9 chia hết cho 9 nên 10n+8 sẽ chia hết cho 9.
n - 5 ϵ Ư(2n + 1) ⇔ 2n + 1 ⋮ n - 5
⇔ 2.(n - 5) + 11 ⋮ n - 5
⇔ 11 ⋮ n - 5
⇔ n - 5 ϵ Ư(11) = { -11; -1; 1;11}
⇔ n ϵ { - 6; 4; 6; 16}
vì n ϵ N ⇔ n ϵ { 4; 6; 16}
n2 + 3 ϵ B(n-1) ⇔ n2 + 3 ⋮ n - 1 ⇔ n2 - 1 + 4 ⋮ n - 1
⇔ (n-1)(n+1) + 4 ⋮ n - 1
⇔ 4 ⋮ n - 1
⇔ n - 1 ϵ Ư(4) = { -4; -1; 1; 4}
n ϵ { -3; 0; 2; 5}
vì n ϵ N ⇔ n ϵ { 0;2;5}