K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2017

16-2n=17-2n-2=17-2(n+1)

Để 15-2n chia hết cho n+1 => 17 chia hết cho n+1

=> n+1=(1, 17) => n=(0, 16)

3 tháng 3 2020

Ta có n+19=n+2+17

Để n+19 chia hết cho n+2 thì n+2+17 chia hết cho n+2

n thuộc N => n+2 thuộc N

=> n+2 thuộc Ư 917)={1;17}

Nếu n+2=1 => n=-3(ktm)

Nếu n+2=17 => n=15 (tm)

\(3x+15⋮n+1\)

\(3\left(x+1\right)+12⋮n+1\)

Vì \(3\left(n+1\right)⋮n+1\)

\(\Rightarrow12⋮n+1\)

\(\Rightarrow n+1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)

Tự xét bảng nha bn 

8 tháng 11 2017

c, n-3 chia hết cho 15

=> n-3 thuộc Ư(15)={1;3;5;15}

=> n={4;6;8;18}

8 tháng 11 2017

a, 5n+9 chia hết cho n+1

<=> 5n+1+9 chia hết cho n+1

Mà 5n+1 chi hết cho n+1 

=> 9 chia hết cho n+1

<=> n+1 thuộc Ư(9)={1;3}

=> n={0;2}

4 tháng 11 2018

a) ta có: n + 15 chia hết cho n + 1

=> n+1+14 chia chia hết cho n + 1

...

b) ta có: 2n+10 chia hết cho n + 2

2n+4+6 chia hết cho n + 2

2.(n+2) + 6 chia hết cho n + 2

...

c) ta có: 3n + 14 chia hết cho n - 1

3n - 3 + 17 chia hết cho n - 1

=> 3.(n-1) + 17 chia hết cho n - 1

...

4 tháng 11 2018

Ta có: n + 15 = (n+1) + 14

Vì \(n+1⋮n+1\)nên để \(\left(n+1\right)+14⋮n+1\) thì \(14⋮\left(n+1\right)\)

\(\Rightarrow\left(n+1\right)\inƯ\left(14\right)\)

\(\Rightarrow\left(n+1\right)\in\left\{1;2;7;14\right\}\)

Tương ứng \(n\in\left(0;1;6;13\right)\)(t/m)

  Vậy \(n\in\left(0;1;6;13\right)\)

b) Ta có: 2n + 10 = 2n + 4 + 6 = 2(n+2) + 6 

Vì \(2\left(n+2\right)⋮n+2\)nên để \(\text{ 2(n+2) + 6 }⋮n+2\)thì \(\text{ 6 }⋮n+2\)

\(\Rightarrow\left(n+2\right)\inƯ\left(6\right)\)

Làm tiếp như ý a)

c) Ta có: 3n + 14 = 3n - 3 + 17 = 3(n-1) + 17

Vì \(3\left(n-1\right)⋮n-1\)nên để \(3\left(n-1\right)+17⋮n-1\)thì \(17⋮n-1\)

=> n-1 là ước nguyên của 17

\(\Rightarrow\left(n-1\right)\in\left\{1;-1;17;-17\right\}\)

   mà \(n\inℕ\)

nên tương ứng \(n\in\left\{2;0;18\right\}\)(t/m)

Vậy \(n\in\left\{2;0;18\right\}\)

1 tháng 11 2018

a, n + 8 chia hết cho n + 1

=> n + 1 + 7 chia hết cho n + 1

=> 7 chia hết cho n + 1

=> n + 1 \(\in\)Ư ( 7 ) 

Mà Ư(7) = { 1 ; 7 }

+>  n + 1 = 1 => n = 0

+> n + 1 = 7 => n = 6

b, 

2n + 11 chia hết cho n - 3

=> 2n - 6 + 17 chia hết cho n - 3 

=> 17 chia hết cho n - 3

=> n - 3 \(\in\)Ư ( 17 ) 

Mà Ư(17) = { 1 ; 17 }

+>  n - 3 = 1 => n = 4

+> n - 3 = 17 => n = 20

c, 

4n - 3 chia hết cho 2n + 1

=> 4n + 2 - 5 chia hết cho 2n + 1

=> 5 chia hết cho 2n + 1

=> 2n + 1 \(\in\)Ư ( 5 ) 

Mà Ư(5) = { 1 ; 5 }

+>  2n + 1 = 1 => n = 0

+> 2n + 1 = 5 => n = 2