Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để A là phân số tối giản thì UCLN(2n+7, 5n+2)=1
Đặt UCLN(2n+7, 5n+2)=d
=>2n+7\(⋮d\)=>5(2n+7)=>10n+35 \(⋮d\)
5n+2\(⋮d\)=>2(5n+2)=>10n+4 \(⋮d\)
Vì 10n+35 \(⋮d\), 10n+4\(⋮d\)=>(10n+35)-(10n+4)
=(10n-10n)+(35-4)=35-4=31 \(⋮d\)=>\(d\in\left\{1;31\right\}\)
Để 2n+7/5n+2 là phân số tối giản thì UCLN(2n+7, 5n+2)=1
Để 2n+7 và 5n+2 không cùng chia hết cho 31 thì n\(\ne12,43,74,105,...\)(mỗi số có khoảng cách với nhau là 31 đơn vị)
Vậy để A là phân số tối giản thì \(n\inℕ,n\ne12,43,74,105,136,...\)
( n + 1 ) n : 2 = aaa
( n + 1 ) n : 2 = a . 111 = a . 37 . 3
=> Trong biểu thức trên tồn tại số 37 và 1 số chia hết cho 3
Giả sử n = 37
=> n + 1 = 38
Mà 38 không chia hết cho 3
=> n+1 = 37
=> n = 36
Mà 36 chia hết cho 3 <=> giá trị n đúng
Với n = 36 và n + 1 = 37 ta được ( n + 1 ) . n : 2 = 37 . 36 : 2 = 666
=> a = 6
Vậy n = 36 và a = 6
đặt n^2+2006 là a^2
=>2006=a^2-n^2
<=>2006=(a+n)(a-n)
do 2006 là số chẵn =>(a-n)(a+n) là số chẵn
=>a,n có cùng tính chẵn lẻ
=>a-n chia hết cho 2
a+n chia hết cho 2
=>(a-n)(a+n) chia hết cho 4
mà 2006 không chia hết cho 4
=> không tìm được số n thỏa mãn n^2+2006 là số chính phương
ta có :
\(A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+..+\left(3^{58}+3^{59}+3^{60}\right)\)
\(=13.3+13.3^4+13.3^7+..+13.3^{58}\text{ nên A chia hết cho 13}\)
b. ta có :
\(M=\left(2+2^3\right)+\left(2^2+2^4\right)+\left(2^5+2^7\right)+..+\left(2^{18}+2^{20}\right)\)
\(=2.5+2^2.5+2^5.5+2^6.5+..+2^{18}.5\text{ nên B chia hết cho 5}\)
1) Ta có: \(10\equiv1\left(mod3\right)\Rightarrow10^n\equiv1\left(mod3\right)\Rightarrow10^n-1⋮3\)
Ta có: \(\left(10^n+1\right)\left(10^n+2\right)=\left(10^n+1\right)\left(10^n-1+3\right)\)
Do \(\hept{\begin{cases}10^n-1⋮3\\3⋮3\end{cases}}\Rightarrow\left(10^n+1\right)\left(10^n+2\right)⋮3\)
2) Ta có: Xét: \(1!+2!+3!+4!+5!+...+n!\)
Xét: \(n\ge5\) thì: \(1!+2!+3!+4!+5!+...+n!=33+5!+...+n!\)
Ta có: \(5!=1.2.3.4.5=\left(2.5\right).1.3.4\) có tận cùng bằng 0
Tương tự,ta suy ra được với n>=5 thì n! có tận cùng bằng 5 (do có chứa 2 thừa số 2 và 5)
\(\Rightarrow33+5!+...+n!\) tận cùng bằng 3 (loại vì scp ko có tận cùng bằng 3)
Như vậy, \(n< 5\)
Với \(n=1;1!+2!+3!+...+n!=1\left(TM\right)\)
Với \(n=2;1!+2!=5\left(KTM\right)\)
Với \(n=3;1!+2!+3!=9\left(TM\right)\)
Với \(n=4;1!+2!+3!+4!=33\left(KTM\right)\)
Vậy n bằng 1 hoặc 3
3) Ta có: \(a;b;c;d\in N\Rightarrow a+b+c+d>2\)
Giả sử \(a+b+c+d\) là số nguyên tố. Ta có: \(a+b+c+d=p\)(p nguyên tố)
\(\Rightarrow a=p-b-c-d\Leftrightarrow ab=pb-b^2-bc-bd\)
\(\Leftrightarrow ab+b^2+bc+bd=pb\)
\(\Leftrightarrow cd+b^2+bc+bd=pb\Rightarrow\left(b+c\right)\left(b+d\right)=pb⋮p\)
Do p nguyên tố \(\Rightarrow\orbr{\begin{cases}b+c⋮p\\b+d⋮p\end{cases}}\Rightarrow\orbr{\begin{cases}b+c>p\\b+d>p\end{cases}}\Rightarrow\orbr{\begin{cases}b+c>a+b+c+d\\b+d>a+b+c+d\end{cases}}\left(vo-ly\right)\)
Vậy a+b+c+d là hợp số
Ta xét hiệu: \(a^n+b^n+c^n+d^n-a-b-c-d⋮2\)(Fermat nhỏ)
\(\Rightarrow a^n+b^n+c^n+d^n⋮2;a^n+b^n+c^n+d^n>2\Rightarrow a^n+b^n+c^n+d^n\) là hợp số (đpcm)
a, Trong ngày thứ nhất Lan đọc số trang sách là:
360 x 2/9 = 80 ( trang )
Số trang sách còn lại sau khi Lan đọc xong ngày thứ nhất là:
360 - 80 = 280 ( trang )
Số trang sách lan đọc ngày thứ hai là:
280 x 25/100 = 70 ( trang )
c, Số sách Lan đọc trong ngày thứ tư là:
15 : 1/6 = 90 ( trang )
Số trang sách Lan đọc trong ngày thứ ba là:
360 - ( 90 + 70 + 80 ) = 120 ( trang )
Đáp số:
Xét các trường hợp :
- Với n \(\ge\) 2 thì 2n chia hết cho 4 => 2n + 15 = 2n + 4 . 3 + 3 chia 4 dư 3 (sai vì số chính phương chia hết cho 4 hoặc chia 4 dư 1) , loại
- Với n =1 => 2n + 15= 17, loại
- Với n = 0 => 2n + 15=16 , chọn
Vậy n = 0 là thỏa mãn điều kiện để 2n + 15 là số chính phương.
Bài gải:
Chia n làm 3 trường hợp:
Trườn hợp 1: n=0
Trường hợp 2: n=1
Trường hợp 3: n>1
Với n>=2 thì 2^n chia hết cho 4=> 2^n + 15 chia 4 dư 3 ( vô lí vì số chính phương chia hết cho 4 hoặc chia 4 dư 1) --> Loại.
Với n=1 => 2^n+15= 17 --> Loại.
Với n=0 => 2^n+15=16 --> Thỏa mãn.
Vậy chỉ có n=0 là thỏa mãn điều kiện để 2^n+15 là số chính phương.